Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. M. Aceves, J. Martinez-Frias, and O. Garcia-Villazana, “Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage,” Int. J. Hydrogen Energ. 25, 10751085 (2000).
2. K. J. Michel and V. Ozolins, “Recent advances in the theory of hydrogen storage in complex metal hydrides,” MRS BULL 38, 462472 (2013).
3. N. P. Stadie, J. J. Vajo, R. W. Cumberland, A. A. Wilson, C. C. Ahn, and B. Fultz, “Zeolite-Templated Carbon Materials for High-Pressure Hydrogen Storage,” Langmuir 28, 1005710063 (2012).
4. S. Y. Lee, and S. J. Park, “Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes,” Mater. Chem. Phys. 124, 10111014 (2010).
5. M. Rahmati and H. Modarress, “The effects of structural parameters of zeolite on the adsorption of hydrogen: a molecular simulation study,” Molec. Simulat. 38, 10381047 (2012).
6. J. Suarez, and F. Huarte-Larranaga, “Hydrogen confined in single-wall carbon nanotubes: Anisotropy effects on ro-vibrational quantum levels,” J. Chem. Phys. 137, 064320 (2012).
7. A. C. Stern, J. L. Belof, M. Eddaoudi, and B. Space, “Understanding hydrogen sorption in a polar metal-organic framework with constricted channels,” J. Chem. Phys. 136, 034705 (2012).
8. J. E. C. Aguila, H. H. Cocoletzi, and G. H. Cocoletzi, “A theoretical analysis of the role of defects in the adsorption of hydrogen sulfide on grapheme,” AIP Adv. 3, 032118 (2013).
9. A. Zuttel, “Hydrogen storage methods,” Naturwissenschaften 91, 157172 (2004).
10. E. Poirier, and A. Dailly, “Thermodynamic study of the adsorbed hydrogen phase in Cu-based metal-organic frameworks at cryogenic temperatures,” Energ. Environ. Sci. 2, 420425 (2009).
11. V. J. Surya, K. Iyakutti, N. Venkataramanan, H. Mizuseki, and Y. Kawazoe, “The role of Li and Ni metals in the adsorbate complex and their effect on the hydrogen storage capacity of single walled carbon nanotubes coated with metal hydrides, LiH and NiH2,” Int. J. Hydrogen Energ. 35, 23682376 (2010).
12. E. S. Kikkinides, M. C. Georgiadis, and A. K. Stubos, “On the optimization of hydrogen storage in metal hydride beds,” Int. J. Hydrogen Energ. 31, 737751 (2006).
13. R. M. Kumar, J. V. Sundar, and V. Subramanian, “Improving the hydrogen storage capacity of metal organic framework by chemical functionalization,” Int. J. Hydrogen Energ. 37, 1607016077 (2012).
14. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes,” Nature 386, 377379 (1997).
15. B. Chakraborty, P. Modak, and S. Banerjee, “Hydrogen Storage in Yttrium-Decorated Single Walled Carbon Nanotube,” J. Phys. Chem. C 116, 2250222508 (2012).
16. S. K. Gupta, H. R. Soni, and P. K. Jha, “Electronic and phonon bandstructures of pristine few layer and metal doped graphene using first principles calculations,” AIP Adv. 3, 032117 (2013).
17. J. Suarez and F. Huarte-Larranaga, “Hydrogen confined in single-wall carbon nanotubes: Anisotropy effects on ro-vibrational quantum levels,” J. Chem. Phys. 137, 064320 (2012).
18. M. P. Suh, H. J. Park, T. K. Prasad, and D.-W. Lim, “Hydrogen Storage in Metal-Organic Frameworks,” Chem. Rev. 112, 782835 (2012).
19. G. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou, “Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study,” J. Supercrit. Fluid, 55, 510523 (2010).
20. L. Jeloaica and V. Sidis, “DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface,” Chem. Phys. Lett. 300, 157162 (1999).
21. T. Meng, C.-Y. Wang, and S.-Y. Wang, “First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom,” Chem. Phys. Lett. 437, 224228 (2007).
22. S. Balilehvand, S. M. Hashemianzadeh, S. Razavi, and H. Karimi, “Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchical multiscale method from quantum mechanics to molecular simulation,” Adsorption-J. of the Int. Adsorption Soc. 18, 1322 (2012).
23. J. P. Perdew, and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B. 45, 1324413249 (1992).
24. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 38653868 (1996);
24.C. Lee, W. Yang, and R. G. Parr, “Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B 37, 785789 (1988);
24.J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46, 66716687 (1992).
25. A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education Limited, 2001).
26. M. G. Martin, B. Chen, C. Wick, J. M. Stubbs, J. J. Potoff, and J. I. Siepmann, MCCCS-Towhee,
27. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem. Soc. 114, 1002410035 (1992).
28. A. K. Rappé, K. S. Colwell, and C. J. Casewit, “Application of a universal force field to metal complexes,” Inorganic Chem. 32, 34383450 (1993).
29. G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, “Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: A Combined ab initio and Monte Carlo investigation,” J. Chem. Phys. 126, 144704 (2007).
30. A. Loiseau, P. Launois, P. Petit, S. Roche, and J.-P. Salvetat, Understanding Carbon Nanotubes: from Basics to Applications (Springer-Verlag Berlin Heidelberg, 2006).
31. A. E. Mattsson, R. Armiento, P. A. Schultz, and T. R. Mattsson, “Nonequivalence of the generalized gradient approximations PBE and PW91,” Phys. Rev. B 73, 195123 (2006).
32. J. N. Israelachvili, Intermolecular and Surface Forces; 3rd ed. (Academic Press, San Diego, 2011).
33. D. Henderson, Fundamentals of Inhomogeneous Fluids (Marcel Dekker: New York, 1992);
33.S. Zhou, and J. R. Solana, Chem. Rev. 109, 28292858 (2009).
34. J. J. Potoff, and A. Z. Panagiotopoulos, “Critical point and phase behavior of the pure fluid and a Lennard-Jones Mixture,” J. Chem. Phys. 109, 1091410920 (1998).
35. S. Zhou, “Acute effect of trace component on capillary phase transition of n-alkanes,” J. Stat. Mech.-Theory E P05023 (2011).
36. S. Zhou, “Modulation of capillary condensation by trace component,” AIP Adv. 1, 022148 (2011).

Data & Media loading...


Article metrics loading...