Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Ohno, Science 281, 951 (1998).
2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
3. H. L. Shi, P. Zhang, S. S. Li, and J. B. Xia, J. Appl. Phys. 106, 023910 (2009).
4. H. Ohno, Nat. Mater. 9, 952 (2010).
5. J. S. Lee and Y. J. Kim, Ceram. Int. 38, S585 (2012).
6. L. Miao, X. D. Xiao, F. Y. Ran, S. Tanemura, and G. Xu, Jpn. J. Appl. Phys. 50, 061101 (2011).
7. M. Ishii, S. Komuro, T. Morikawa, and Y. Aoyagi, J. Appl. Phys. 89, 3679 (2001).
8. D. Dimova-Malinovska, H. Nichev, O. Angelov, V. Grigorov, and M. Kamenova, Superlattices Microstruct. 42, 123 (2007).
9. J. Qi, D. Q. Gao, J. H. Liu, W. G. Yang, Q. Wang, J. Y. Zhou, Y. H. Yang, and J. L. Liu, Appl. Phys. A-Mater. 100, 79 (2010).
10. J. Qi, Y. H. Yang, L. Zhang, J. H. Chi, D. Q. Gao, and D. S. Xue, Scr. Mater. 60, 289 (2009).
11. C. Zener, Phys. Rev. 82, 403 (1951).
12. Q. J. Wang, J. B. Wang, X. L. Zhong, Q. H. Tan, and Y. C. Zhou, J. Phys. Chem. C 115, 24478 (2011).
13. F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, Mater. Sci. Eng. R-Rep. 62, 1 (2008).
14. X. J. Liu, C. Song, F. Zeng, and F. Pan, J. Phys.: Condens. Matte. 19, 296208 (2007).
15. X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, New J. Phys. 8, 135 (2006).
16. S. Chattopadhyay, T. K. Nath, A. J. Behan, J. R. Neal, D. Score, Q. Feng, A. M. Fox, and G. A. Gehring, J. Magn. Magn. Mater. 323, 1033 (2011).
17. X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, L. X. Song, H. Wang, and S. D. Yao, J. Cryst. Growth 96, 135 (2006).
18. Y. Chen, X. L. Xu, G. H. Zhang, H. Xue, and S. Y. Ma, Phys. E 42, 1713 (2010).
19. J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. N. Duenow, T. J. Coutts, S. B. Zhang, D. C. Look, and S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013).
20. H. Yue, A. Wu, Y. Feng, X. Zhang, and T. Li, Thin Solid Films 519, 5577 (2011).
21. Z. Xiong, X. C. Liu, S. Y. Zhuo, J. H. Yang, E. W. Shi, and W. S. Yan, Appl. Phys. Lett. 99, 052513 (2011).
22. T. S. Herng, M. F. Wong, D. Qi, J. Yi, A. Kumar, A. Huang, F. C. Kartawidjaja, S. Smadici, P. Abbamonte, C. Sánchez-Hanke, S. Shannigrahi, J. M. Xue, J. Wang, Y. P. Feng, A. Rusydi, K. Zeng, and J. Ding, Adv. Mater. 23, 1635 (2011).
23. A. Behan, A. Mokhtari, H. Blythe, D. Score, X. Xu, J. Neal, A. Fox, and G. Gehring, Phys. Rev. Lett. 100, 47206 (2008).
24. Z. L. Lu, H. S. Hsu, Y. H. Tzeng, F. M. Zhang, Y. W. Du, and J. C. A. Huang, Appl. Phys. Lett. 95, 02501 (2009).
25. Z. Xiong, X. C. Liu, S. Y. Zhuo, J. H. Yang, E. W. Shi, W. S. Yan, S. D. Yao, and H. P. Pan, Appl. Phys. Lett. 102, 022414 (2013).

Data & Media loading...


Article metrics loading...



Zn ErAlO (0 ≤ y ≤ 0.04) thin films have been prepared by inductively coupled plasma enhanced physical vapor deposition method. It is found that Er substitutes Zn in ZnO lattice without forming any magnetic secondary phase. Al-doping has dual effects on the electron transport and magnetic properties of Er-doped ZnO films, wherein Al and Al play different roles. When 0 ≤ y ≤ 0.02, the dominant Al increases and induces both carrier concentration and saturation magnetization ( ) increasing. When 0.02 < y ≤ 0.04, Al becomes main defect and enhances the probability of electron scattering, thus reduces the .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd