Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4819462
1.
1. Y. G. Xu, X. L. Gong, S. H. Xuan, W. Zhang, and Y. C. Fan, Soft Matter 7, 5246 (2011).
http://dx.doi.org/10.1039/c1sm05301a
2.
2. Y. G. Xu, X. L. Gong, S. H. Xuan, X. F. Li, L. J. Qin, and W. Q. Jiang, Soft Matter 8, 8483 (2012).
http://dx.doi.org/10.1039/c2sm25998b
3.
3. D. T. Zimmerman, R. C. Bell, J. A. Filer, J. O. Karli, and N. M. Wereley, Appl. Phys. Lett. 95, 014102 (2009);
http://dx.doi.org/10.1063/1.3167815
3.G. Bossis, S. Lacis, A. Meunier, and O. Volkova, J. Magn. Magn. Mater. 252, 224 (2002);
http://dx.doi.org/10.1016/S0304-8853(02)00680-7
3.J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter 7, 3701 (2011);
http://dx.doi.org/10.1039/c0sm01221a
3.M. T. López-López, L. Rodríguez-Arco, A. Zubarev, L. Iskakova, and J. D. G. Durán, J. Appl. Phys. 108, 083503 (2010).
http://dx.doi.org/10.1063/1.3498804
4.
4. W. H. Li and X. Z. Zhang, Smart Mater. Struct. 19 (3) (2010);
4.L. C. Davis, J. Appl. Phys. 85, 3348 (1999);
http://dx.doi.org/10.1063/1.369682
4.X. L. Gong, G. J. Liao, and S. H. Xuan, Appl. Phys. Lett. 100, 211909 (2012).
http://dx.doi.org/10.1063/1.4722789
5.
5. I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, J. Appl. Phys. 97, 10Q912 (2005).
http://dx.doi.org/10.1063/1.1853835
6.
6. X. J. Wang and F. Gordaninejad, Rheol. Acta 45, 899 (2006);
http://dx.doi.org/10.1007/s00397-005-0058-y
6.M. C. Heine, J. de Vicente, and D. J. Klingenberg, Phys. Fluids 18, 023301 (2006);
http://dx.doi.org/10.1063/1.2171442
6.J. M. Ginder and L. C. Davis, Appl. Phys. Lett. 65, 3410 (1994).
http://dx.doi.org/10.1063/1.112408
7.
7. M. Mohebi, N. Jamasbi, and J. Liu, Phys. Rev. E 54, 5407 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.5407
8.
8. J. de Vicente, F. Gonzalez-Caballero, G. Bossis, and O. Volkova, J. Rheol. 46, 1295 (2002).
http://dx.doi.org/10.1122/1.1501961
9.
9. H. See and R. Tanner, Rheol. Acta 42, 166 (2003).
http://dx.doi.org/10.1007/s00397-002-0268-5
10.
10. H. M. Laun, C. Gabriel, and G. Schmidt, J. Non-Newton. Fluid Mech. 148, 47 (2008).
http://dx.doi.org/10.1016/j.jnnfm.2007.04.019
11.
11. J. L. Jiang, Y. Tian, D. X. Ren, and Y. G. Meng, Smart Mater. Struct. 20, 085012 (2011).
http://dx.doi.org/10.1088/0964-1726/20/8/085012
12.
12. X. L. Gong, C. Y. Guo, S. H. Xuan, T. X. Liu, L. H. Zong, and C. Peng, Soft Matter 8, 5256 (2012).
http://dx.doi.org/10.1039/c2sm25341k
13.
13. G. J. Liao, X. L. Gong, S. H. Xuan, C. Y. Guo, and L. H. Zong, Ind. Eng. Chem. Res. 51, 3322 (2012).
http://dx.doi.org/10.1021/ie201976e
14.
14. C. Tan and T. B. Jones, J. Appl. Phys. 73, 3593 (1993);
http://dx.doi.org/10.1063/1.352916
14.E. E. Keaveny and M. R. Maxey, J. Comput. Phys. 227, 9554 (2008);
http://dx.doi.org/10.1016/j.jcp.2008.07.008
14.B. J. Cox, N. Thamwattana, and J. M. Hill, Appl. Phys. Lett. 88, 152903 (2006);
http://dx.doi.org/10.1063/1.2185607
14.Z. Y. Wang, Z. Peng, K. Q. Lu, and W. J. Wen, Appl. Phys. Lett. 82, 1796 (2003).
http://dx.doi.org/10.1063/1.1560556
15.
15. Sonia Melle, Oscar G. Calderón, Miguel A. Rubio, and Gerald G. Fuller, J. Non-Newton. Fluid Mech. 102, 135 (2002).
http://dx.doi.org/10.1016/S0377-0257(01)00174-4
16.
16. D. J. Klingenberg, C. H. Olk, M. A. Golden, and J. C. Ulicny, J. Phys.: Condens. Matter 22, 324101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/32/324101
17.
17. K. S. Fancey, J. Mater. Sci. 40, 4827 (2005).
http://dx.doi.org/10.1007/s10853-005-2020-x
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4819462
Loading
/content/aip/journal/adva/3/8/10.1063/1.4819462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4819462
2013-08-21
2016-12-08

Abstract

An abrupt drop phenomenon of magneto-induced normal stress of magnetorheological plastomer is reported and a microstructure dependent slipping hypothesis is proposed to interpret this interesting behavior. For polyurethane based magnetorheological plastomer sample with 70 wt.% carbonyl iron powder, the magneto-induced normal stress can reach to as high as 60.2 kPa when a 930 mT magnetic field is suddenly applied. Meanwhile, the normal stress shows unpredicted abrupt drop. Particle dynamics is used to investigate the physical generating mechanism of normal stress. The simulation result agrees well with the experimental result, indicating that the interior microstructure of iron particle aggregation plays a crucial role to the normal stress.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4819462.html;jsessionid=PZOEXrJhKrn8DBDP8s7xrcae.x-aip-live-03?itemId=/content/aip/journal/adva/3/8/10.1063/1.4819462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4819462&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4819462'
Right1,Right2,Right3,