Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. G. Xu, X. L. Gong, S. H. Xuan, W. Zhang, and Y. C. Fan, Soft Matter 7, 5246 (2011).
2. Y. G. Xu, X. L. Gong, S. H. Xuan, X. F. Li, L. J. Qin, and W. Q. Jiang, Soft Matter 8, 8483 (2012).
3. D. T. Zimmerman, R. C. Bell, J. A. Filer, J. O. Karli, and N. M. Wereley, Appl. Phys. Lett. 95, 014102 (2009);
3.G. Bossis, S. Lacis, A. Meunier, and O. Volkova, J. Magn. Magn. Mater. 252, 224 (2002);
3.J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter 7, 3701 (2011);
3.M. T. López-López, L. Rodríguez-Arco, A. Zubarev, L. Iskakova, and J. D. G. Durán, J. Appl. Phys. 108, 083503 (2010).
4. W. H. Li and X. Z. Zhang, Smart Mater. Struct. 19 (3) (2010);
4.L. C. Davis, J. Appl. Phys. 85, 3348 (1999);
4.X. L. Gong, G. J. Liao, and S. H. Xuan, Appl. Phys. Lett. 100, 211909 (2012).
5. I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, J. Appl. Phys. 97, 10Q912 (2005).
6. X. J. Wang and F. Gordaninejad, Rheol. Acta 45, 899 (2006);
6.M. C. Heine, J. de Vicente, and D. J. Klingenberg, Phys. Fluids 18, 023301 (2006);
6.J. M. Ginder and L. C. Davis, Appl. Phys. Lett. 65, 3410 (1994).
7. M. Mohebi, N. Jamasbi, and J. Liu, Phys. Rev. E 54, 5407 (1996).
8. J. de Vicente, F. Gonzalez-Caballero, G. Bossis, and O. Volkova, J. Rheol. 46, 1295 (2002).
9. H. See and R. Tanner, Rheol. Acta 42, 166 (2003).
10. H. M. Laun, C. Gabriel, and G. Schmidt, J. Non-Newton. Fluid Mech. 148, 47 (2008).
11. J. L. Jiang, Y. Tian, D. X. Ren, and Y. G. Meng, Smart Mater. Struct. 20, 085012 (2011).
12. X. L. Gong, C. Y. Guo, S. H. Xuan, T. X. Liu, L. H. Zong, and C. Peng, Soft Matter 8, 5256 (2012).
13. G. J. Liao, X. L. Gong, S. H. Xuan, C. Y. Guo, and L. H. Zong, Ind. Eng. Chem. Res. 51, 3322 (2012).
14. C. Tan and T. B. Jones, J. Appl. Phys. 73, 3593 (1993);
14.E. E. Keaveny and M. R. Maxey, J. Comput. Phys. 227, 9554 (2008);
14.B. J. Cox, N. Thamwattana, and J. M. Hill, Appl. Phys. Lett. 88, 152903 (2006);
14.Z. Y. Wang, Z. Peng, K. Q. Lu, and W. J. Wen, Appl. Phys. Lett. 82, 1796 (2003).
15. Sonia Melle, Oscar G. Calderón, Miguel A. Rubio, and Gerald G. Fuller, J. Non-Newton. Fluid Mech. 102, 135 (2002).
16. D. J. Klingenberg, C. H. Olk, M. A. Golden, and J. C. Ulicny, J. Phys.: Condens. Matter 22, 324101 (2010).
17. K. S. Fancey, J. Mater. Sci. 40, 4827 (2005).

Data & Media loading...


Article metrics loading...



An abrupt drop phenomenon of magneto-induced normal stress of magnetorheological plastomer is reported and a microstructure dependent slipping hypothesis is proposed to interpret this interesting behavior. For polyurethane based magnetorheological plastomer sample with 70 wt.% carbonyl iron powder, the magneto-induced normal stress can reach to as high as 60.2 kPa when a 930 mT magnetic field is suddenly applied. Meanwhile, the normal stress shows unpredicted abrupt drop. Particle dynamics is used to investigate the physical generating mechanism of normal stress. The simulation result agrees well with the experimental result, indicating that the interior microstructure of iron particle aggregation plays a crucial role to the normal stress.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd