Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4819483
1.
1. L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Gaal, and L. Forro, Phys. Rev. B 66, 094301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094301
2.
2. T. M. Pekarek, L. H. Ranger, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 99, 08D511 (2006).
http://dx.doi.org/10.1063/1.2165924
3.
3. O. Kahn and C. J. Martinez, Science, 44, 279 (1998).
4.
4. A. Bousekon, G. Molnár, and G. Matouzenko, Euro. J. Inor. Chem. 22, 4353 (2004).
5.
5. S. Singh, M. R. Fitzsimmons, T. Lookman, J. D. Thompson, H. Jeen, A. Biswa, M. A. Roldan, and M. Varela, Phys. Rev. Lett. 108, 077207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.077207
6.
6. S. Demirtas, M. R. Hossu, R. E. Camley, H. C. Mireles, and A. R. Koymen, Phys. Rev. B 72, 184433 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184433
7.
7. M. R. Hossu and A. R. Koymen, J. Appl. Phys. 99, 08C704 (2006).
http://dx.doi.org/10.1063/1.2172531
8.
8. A. L. Dantas, R. E. Camley, and A. S. Carrico, Phys. Rev. B 75, 094436 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094436
9.
9. A. Sato, E. Chishima, K. Soma, and T. Mori, Acta Metall. 30, 1177 (1982).
http://dx.doi.org/10.1016/0001-6160(82)90011-6
10.
10. A. Sato, E. Shishima, Y. Yamaji, and T. Mori, Acta Metall. 32, 539 (1984).
http://dx.doi.org/10.1016/0001-6160(84)90065-8
11.
11. T. Gebhardt, D. Music, D. Kossmann, M. Ekholm, I. A. Abrikosov, L. Vitos, and J. M. Schneider, Acta Mater. 59, 3145 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.01.054
12.
12. N. Stanford and D. P. Dunne, Acta Mater. 58, 6752 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.08.041
13.
13. Y. S. Zhang, X. Lu, X. Tian, and Z. X. Qin, Mater. Sci. & Eng. A 334, 19 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01781-6
14.
14. J. F. Wan, S. P. Chen, T. Y. Hsu, X. L. Lei, and Y. N. Huang, Solid State Commu. 131, 27 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.04.025
15.
15. S. C. Chen, C. Y. Chung, C. L. Yan, and T. Y. Hsu (Xu Zuyao), Mater. Sci. & Eng. A 264, 262 (1999).
http://dx.doi.org/10.1016/S0921-5093(98)01105-8
16.
16. J. F. Wan, S. P. Chen, T. Y. Hsu, and Y. N. Huang, Mater. Sci. & Eng. A 438, 887 (2006).
http://dx.doi.org/10.1016/j.msea.2006.02.152
17.
17. S. W. Bicnacki, Phys. Rev. B 66, 094405 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094405
18.
18. S. W. Bicnacki, Phys. Rev. B 68, 174417 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.174417
19.
19. R. E. Camley, W. Lohstroh, G. P. Felcher, N. Hosoito, and H. Hashizume, J. Magn. Mater. 286, 65 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.09.041
20.
20. M. K. Chattopadhyay, S. B. Roy, and P. Chaddah, Phys. Rev. B 72, 18040R (2005).
21.
21. F-J. P. Rache, B. Tadić, L. Maňosa, A. Planes, and E. Vives, Phys. Rev. Lett. 93, 195701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.195701
22.
22. S. Demirtas and A. R. Koymen, J. Phys.: Condens. Matter. 19, 086230 (2007).
http://dx.doi.org/10.1088/0953-8984/19/8/086230
23.
23. E. Mathews, K. M. Ranjith, M. Baenitz, and R. Nath, Solid State Commu. 154, 56 (2013).
http://dx.doi.org/10.1016/j.ssc.2012.10.033
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4819483
Loading
/content/aip/journal/adva/3/8/10.1063/1.4819483
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4819483
2013-08-22
2016-12-10

Abstract

Magnetic thermal hysteresis (MTH) associated with a paramagnetic (PM)-antiferromagnetic (AFM) phase transition was found in an Fe-24.4Mn-5.9Si-5.1Cr shape-memory alloy. Aside from the magnetic field (), the driving rate () can also tune the critical temperature of the magnetic transition and cause an increase in MTH. The magnetic phase diagram obtained is discussed. The equation for MTH was deduced based on the Landau model for a PM-AFM transition that includes and dependence, which gives a reasonable account of the experimental results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4819483.html;jsessionid=S7T1iFxilk5RkrgnhdFZSD-C.x-aip-live-02?itemId=/content/aip/journal/adva/3/8/10.1063/1.4819483&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4819483&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4819483'
Right1,Right2,Right3,