Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4820377
1.
1. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and A. K. Pourrezaei, Engineering in Medicine and Biology Magazine, IEEE 26 (4), 3846 (2007).
http://dx.doi.org/10.1109/MEMB.2007.384094
2.
2. N. T. Gordon, Semiconductor Science and Technology 6(12C), C106 (1991).
http://dx.doi.org/10.1088/0268-1242/6/12C/021
3.
3. Y. Cui, S. Zuo, J. Jiang, S. Yuan, and J. Chu, Solar Energy Materials and Solar Cells 95(8), 21362140 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.03.013
4.
4. A. L. Patterson, Physical Review 56(10), 978982 (1939).
http://dx.doi.org/10.1103/PhysRev.56.978
5.
5. C.-C. Ting, S.-Y. Chen, and D.-M. Liu, Journal of Applied Physics 88(8), 46284633 (2000).
http://dx.doi.org/10.1063/1.1309039
6.
6. Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, Journal of Applied Physics 106(12), 123505123505 (2009).
http://dx.doi.org/10.1063/1.3270401
7.
7. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97(14), 143508143503 (2010).
http://dx.doi.org/10.1063/1.3499284
8.
8. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Thin Solid Films 517(7), 25192523 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.031
9.
9. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris, and E. S. Aydil, Chemical Communications 47(42), 1172111723 (2011).
http://dx.doi.org/10.1039/c1cc14687d
10.
10. S.-Y. Wang, W. Wang, and Z.-H. Lu, Materials Science and Engineering: B 103(2), 184188 (2003).
http://dx.doi.org/10.1016/S0921-5107(03)00199-5
11.
11. T. Unold and H. W. Schock, Annual Review of Materials Research 41(1), 297321 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100437
12.
12. J. Cheng, Y. Zhang, and R. Guo, Journal of Crystal Growth 310(1), 5761 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.08.034
13.
13. T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, Journal of Applied Physics 103(9), 093109093107 (2008).
http://dx.doi.org/10.1063/1.2919779
14.
14. S. Almaviva, M. Marinelli, E. Milani, G. Prestopino, A. Tucciarone, C. Verona, G. Verona-Rinati, M. Angelone, and M. Pillon, Diamond and Related Materials 18(1), 101105 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.10.034
15.
15. X. Chen, H. Zhu, J. Cai, and Z. Wu, Journal of Applied Physics 102(2), 024505024504 (2007).
http://dx.doi.org/10.1063/1.2747213
16.
16. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, and D. Golberg, Advanced Materials 22(23), 25472552 (2010).
http://dx.doi.org/10.1002/adma.200903586
17.
17. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, ACS Nano 4(10), 62856291 (2010).
http://dx.doi.org/10.1021/nn1022878
18.
18. E. Ozbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, Appl. Phys. Lett. 74(8), 10721074 (1999).
http://dx.doi.org/10.1063/1.123485
19.
19. L. A. A. Pettersson, L. S. Roman, and O. Inganas, Journal of Applied Physics 86(1), 487496 (1999).
http://dx.doi.org/10.1063/1.370757
20.
20. A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, Journal of Non-Crystalline Solids 198–200, Part 2 (0), 709713 (1996).
http://dx.doi.org/10.1016/0022-3093(96)00013-0
21.
21. L. Wetenkamp, G. F. West, and H. Többen, Journal of Non-Crystalline Solids 140(0), 3540 (1992).
http://dx.doi.org/10.1016/S0022-3093(05)80737-9
22.
22. A. I. Khudiar, M. Zulfequar, and Z. H. Khan, Radiation Effects and Defects in Solids 164(9), 551560 (2009).
http://dx.doi.org/10.1080/10420150902941578
23.
23. S. Botti, D. Kammerlander, and M. A. L. Marques, Applied Physics Letters 98(24), 241915241913 (2011).
http://dx.doi.org/10.1063/1.3600060
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4820377 for EDAX analysis of CZTS thin films. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4820377
Loading
/content/aip/journal/adva/3/8/10.1063/1.4820377
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4820377
2013-08-29
2016-09-28

Abstract

The thin films of Cu ZnSnS (CZTS) were grown by co-sputtering further the structural, optical and electrical properties were analyzed and confirmed the CZTS phase formation. The photo response of CZTS in near IR photodectection has been demonstrated. The detector response was measured employing both the IR lamp and IR laser illuminations. The calculated growth and decay constants were 130 m sec and 700 m sec followed by the slower components upon lamp illumination. The external quantum efficiency of 15%, responsivity of 13 AW makes CZTS a suitable candidate for the IR photodectection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4820377.html;jsessionid=5RLJt33n8M1wkq7TQUhiEUdl.x-aip-live-03?itemId=/content/aip/journal/adva/3/8/10.1063/1.4820377&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4820377&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4820377'
Right1,Right2,Right3,