Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Song, X. Wang, E. Riedo, and Z. L. Wang, J. Phys. Chem. B 109, 9869 (2005).
2. P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, Chem. Mater. 16, 5133 (2004).
3. P. Sundara Venkatesh, V. Ramakrishnan, and K. Jeganathan, CrystEngComm. 14, 3907 (2012).
4. R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, Appl. Phys. B 94, 33 (2009).
5. L. Wang, K. Chen, and L. Dong, J. Phys. Chem. C 114, 17358 (2010).
6. L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, and Y. Lin, J. Mater. Chem. 22, 12915 (2012).
7. A. Umar and Y. B. Hahn, Nanotechnology 17, 2174 (2006)
8. Z. Zhu, L. Zhang, J. Y. Howe, Y. Liao, J. T. Speidel, S. Smith, and H. Fong, Chem. Commun. 2568 (2009).
9. B. Q. Cao, Z. M. Liu, H. Y. Xu, H. B. Gong, D. Nakamura, K. Sakai, M. Higashihata, and T. Okada, CrystEngComm. 13, 4282 (2011).
10. Z. Zhong, H. Gong, Y. Ma, Y. Fan, and Z. Jiang, Nanoscale Res. Lett. 6, 322 (2011).
11. E. R. Hemesath, D. K. Schreiber, E. B. Gulsoy, C. F. Kisielowski, A. K. Petford-Long, P. W. Voorhees, and L. J. Lauhon, Nano Lett. 12, 167 (2012).
12. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, Nat. Nanotechnol. 3, 168 (2008).
13. J. H. Park, H. K. Park, J. Jeong, W. Kim, B. K. Min, and Y. R. Do, J. Electrochem. Soc. 158, K131 (2011).
14. Y. T. Lin, C. Y. Chen, C. P. Hsiung, K. W. Cheng, and J. Y. Gan, Appl. Phys. Lett. 89, 063123 (2006).
15. H. Jung, R. Kuljic, M. A. Stroscio, and M. Dutta, Appl. Phys. Lett. 96, 153106 (2010).
16. Q. L. Liua, Y. Bandob, and J. Q. Hub, J. Cryst. Growth 306, 288 (2007).
17. R. Tararam, E. Joanni, R. Savu, P. R. Bueno, E. Longo, and J. A. Varela, ACS Appl. Mater. Interfaces 3, 500 (2011).
18. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).
19. W. T. Chiou, W. Y. Wu, and J. M. Ting, Diamond Relat. Mater. 12, 1841 (2003).
20. M. T. Chen and J. M. Ting, Thin Solid Films 494, 250 (2006).
21. T. L. Chou, W. Y. Wu, and J. M. Ting, Thin Solid Films 518, 1553 (2009).
22. S. Choopun, N. Hongsith, E. Wongrat, T. Kamwanna, S. Singkarat, P. Mangkorntong, and N. Mangkorntong, J. Am. Ceram. Soc. 91, 174 (2008).
23. P. Sundara Venkatesh, V. Purushothaman, S. Esakki Muthu, S. Arumugam, V. Ramakrishnan, K. Jeganathan, and K. Ramamurthi, CrystEngComm. 14, 4713 (2012).
24. D. S. Kim, U. Gösele, and M. Zacharias, J. Cryst. Growth 311, 3216 (2009).
25. E. I. Givargizov, Highly Anisotropic Crystals, Reidel, Dordrecht, 1987.
26. P. Sundara Venkatesh, V. Ramakrishnan, and K. Jeganathan, Mater. Res. Bull. 48, 38113816 (2013).
27. D. W. Hoffman and J. A. Thornton, J. Vac. Sci. Technol. 17, 380 (1980).
28. J. A. Thornton and D. W. Hoffman, Thin Solid Films 171, 5 (1989).
29. J. Serrano, F. J. Manjón, A. H. Romero, F. Widulle, R. Lauck, and M. Cardona, Phys. Rev. Lett. 90, 055510 (2003).
30. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
31. P. Sundara Venkatesh and K. Jeganathan, J. Solid State Chem. 200, 84 (2013).
32. K. Sakai, K. Noguchi, A. Fukuyama, T. Ikari, and T. Okada, Jpn. J. Appl. Phys. 48, 085001 (2009).
33. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. A. Morkoç, J. Appl. Phys. 98, 041301 (2005).
34. B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett. 83, 1635 (2003).
35. Z. Fang, Y. Wang, D. Xu, Y. Tan, and X. Liu, Opt. Mater. 26, 239 (2004).
36. E. Gür, S. Tüzemen, K. Meral, and Y. Onganer, Appl. Phys. A: Mater. Sci. Process. 94, 549 (2009).
37. C. L. Hsu, S. J. Chang, Y.-R. Lin, S. Y. Tsai, and I. C. Chen, Chem. Commun. 3571 (2005).
38. S. Jeong and C. Lee, J. Anal. Sci. Tech. 2, 59 (2011).
39. L. L. Zhang, C. X. Guo, J. G. Chen, and J. T. Hu, Chin. Phys. 14, 586 (2005).
40. S. Bayan and D. Mohanta, J. Appl. Phys. 110, 054316 (2011).
41. M. Koyano, P. Quocbao, L. T. Thanhbinh, L. Hongha, N. Ngoclong, and S. Katayama, Phys. Status Solidi (a) 193, 125 (2002).<125::AID-PSSA125>3.0.CO;2-X
42. M. Wang, E. J. Kim, E. W. Shin, J. S. Chung, S. H. Hahn, and C. Park, J. Phys. Chem. C 12, 1920 (2008).

Data & Media loading...


Article metrics loading...



The growth of ZnO nanostructures under various combinations of argon and oxygen pressures by radio frequency magnetron sputtering has been reported. The anisotropic transformation of nanostructures from the vertical standing nanorods to self branched lateral nanowires has been observed due to the change in the migration length of the adatoms owing to the deposition pressure and temperature. A dominant (002) reflection having narrow full width at half maximum of the vertical standing nanorods depicts the preferential orientation along c-axis of wurtzite ZnO with high crystalline nature. It is further substantiated by a sharp E phonon mode of ZnO nanorods at 437.2 cm. A broad green emission at 2.28 eV pertaining to oxygen vacancies that quenches with increasing the oxygen pressure due to the compensation of oxygen vacancies while zinc vacancy mediated emission at 3.01 eV is enhanced.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd