Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. B. Talawar, A. P. Agarwal, M. Anniyappan, G. M. Gore, S. N. Asthana, and S. Venugopalan, J Hazard Mater 137(3), 1848 (2006).
2. A. K. Nandi, S. M. Kasar, U. Thanigaivelan, M. Ghosh, A. K. Mandal, and S. C. Bhattacharyya, Journal of Energetic Materials 25(4), 213 (2007).
3. T. Yong-Jin Han, Philip F. Pagoria, Alexander E. Gash, Amitesh Maiti, Christine A. Orme, Alexander R. Mitchell, and Laurence E. Fried, New Journal of Chemistry 33(1), 50 (2009).
4. D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, J Hazard Mater 151(2–3), 289 (2008).
5. C. B. Skidmore, T. A. Butler, and C. W. Sandoval, Report No. LA-14003.
6. H. F. Rizzo, J. R. Humphrey, and J. R. Kolb, Propellants, Explosives, Pyrotechnics 6(2), 27 (1981).
7. R. N. Mulford and J. A. Romero, Sensitivity of TATB-based explosive PBX 9502 after thermal expansion, Shock compression of condensed matter, Amherst, Massachusetts, July 27-August 1, 1997. pp. 723726.
8. John R. Kolb and H. F. Rizzo, Propellants, Explosives, Pyrotechnics 4(1), 10 (1979).
9. J. L. Maienschein and F. Garcia, Thermochimica Acta 384(1), 71 (2002).
10. Yubin Li, Yuqi Zhou, Fude Nie, Jie Sun, and Ying Hao, Chinese Iournal of Energetic Materials (Hanneng Cailiao) 9(3) (2011).
11. K. F. Grebenkin, Combust Explos Shock Waves 45(1), 78 (2009).
12. Jie Sun, Bin Kang, Chao Xue, Yu Liu, Yunxia Xia, Xiaofeng Liu, and Wei Zhang, Journal of Energetic Materials 28(3), 189 (2010).
13. Trevor M. Willey, D. Mark Hoffman, Tony van Buuren, Lisa Lauderbach, Richard H. Gee, Amitesh Maiti, George E. Overturf, Laurence E. Fried, and Jan Ilavsky, Propellants, Explosives, Pyrotechnics 34(5), 406 (2009).
14. Trevor M. Willey, Tony van Buuren, Jonathan R. I. Lee, George E. Overturf, John H. Kinney, Jeff Handly, Brandon L. Weeks, and Jan Ilavsky, Pyrotech 31(6), 466 (2006).
15. Jie Sun, Bin Kang, Haobin Zhang, Yu Liu, Yunxia Xia, Yanqun Yao, and Xiaofeng Liu, Central European Journal of Energetic Materials 8(1), 11 (2011).
16. Richard H. Gee, Amitesh Maiti, and Laurence E. Fried, Applied Physics Letters 90(25), 254105 (2007).
17. Ricardo B. Wchwarz, Geoffrey W. Brown, Darla G. Thompson, Barton W. Olinger, Jevan Furmanski, Howard H. Cady, Porpellants, Explosives, Pyrotechnics, Avaliable online (2013).
18. Richard H. Gee, Szczepan Roszak, Krishnan Balasubramanian, and Laurence E. Fried, The Journal of Chemical Physics 120(15), 7059 (2004).
19. S. Roszak, R. H. Gee, K. Balasubramanian, and L. E. Fried, Chemical Physics Letters 374(3), 286 (2003).
20. A. Maiti, R. H. Gee, D. M. Hoffman, and L. E. Fried, J. Appl. Phys. 103, 053504 (2008).
21. Haobin Zhang, Jie Sun, Bin Kang, Yuanjie Shu, Xiaoyan Shu, Yu Liu, and Xiaofeng Liu, Propellants, Explosives, Pyrotechnics 37(2), 172 (2012).
22. H. H. Cady and A. C. Larson, “The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene,” Acta Crystallographica 18, 485496 (1965).
23. T. Asakawa, AIP Advances 2(2), 022153 (2012).
24. Jie Sun, Haobin Zhang, Maoping Wen, Qiu Zhang, and Xiaofeng Liu, Chinese Journal of Energetic Materials 20(5), 545 (2012).
25. L. B. M. Cusker, R. B. Von Dreele, and D. E. Cox, J. Appl. Cryst 32, 3650 (1999).
26. R. J. Price and J. C. Bokros, J. Appl. Phys 36, 1897 (1965).
27. A. C. Bailey and B. Yates, J. Appl. Phys. A 41, 5088 (1970).
28. R. G. Naum and C. K. Jun, J. Appl. Phys. A 41, 5092 (1970).

Data & Media loading...


Article metrics loading...



Three kinds of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) cylinders compacted with TATB raw materials, recrystallized near-spherical and platy TATB crystals are compared to investigate the effects of crystal quality and preferred orientation on their irreversible growth. The results show that the higher the crystal quality, the lower the irreversible volume growth. The compacted cylinders of raw material TATB, with the poorest crystal quality, possess more irreversible growth than those with recrystallized high quality TATB crystals. Irreversible growth of TATB cylinders are also affected by crystal preferred orientation. With the same crystal quality, crystal preferred orientation leads to anisotropic irreversible dimension growth, but has no effect on the volume expansion of TATB cylinders. By changing the crystal quality and preferred orientation, the deformation problem of TATB-based PBX explosives may be restricted.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd