Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2. N. Srivastava, G. He, Luxmi, P. C. Mende, R. M. Feenstra, and Y. Sun, J. Phys. D: Appl.Phys. 45, 154001 (2012).
3. A. Sinitskii, A. Dimiev, D. V. Kosynkin, and J. M. Tour, ACS nano 4, 5405 (2010).
4. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature 466, 470 (2010).
5. A. Chuvilin, E. Bichoutskaia, M. C. Gimenez-Lopez, T. W. Chamerlain, G. A. Rance, N. Kuganathan, J. Biskupek, U. Kaiser, and A. N. Khiobystov, Nature Mater. 10, 687 (2011).
6. A. V. Talyzin, I. V. Anoshikin, A. V. Krasheninnikov, R. M. Nieminen, A. G. Nasibulin, H. Jiang, and E. I. Kauppinen, Nano Lett. 11, 4352 (2011).
7. B. Botka, M. E. Füstös, G. Klupp, D. Kocsis, E. Székely, M. Utczás, B. Simándi, Á. Botos, R. Hackl, and K. Kamarás, Phys. Status Solidi B 249, 2432 (2012).
8. M. Fujihara, Y. Miyata, R. Kitaura, Y. Nishimura, C. Camacho, S. Irle, T. Okazaki, and H. Shinohara, J. Phys. Chem. C 116, 15141 (2012).
9. Y. Jiang, H. Li, Y. Li, H. Yu, K. M. Liew, Y. He, and X. liu, ACS nano 5, 2126 (2011).
10. P. V. Fedotov, A. I. Chernov, A. V. Talyzin, I. V. Anoshkin, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, J. Nanoelectron. and Optoelectron. 8, 16 (2013).
11. I. V. Lebedeva, A. M. Popov, A. A. Knizhnik, A. N. Khlobystov, and B. V. Potapkin, Nanoscale 4, 4522 (2012).
12. V. B. Shenoy, C. D. Reddy, A. Ramasubramaniam, and Y. W. Zhang, Phys. Rev. Lett. 101, 245501 (2008).
13. K. V. Bets and B. I. Yakobson, Nano Res. 2, 161 (2009).
14. D. Gunlycke, J. Li, J. W. Mintmire, and C. T. White, Nano Lett. 10, 3638 (2010).
15. A. Ramasubramaniam, P. Koskinen, O. O. Kit, and V. B. Shenoy, J. Appl., Phys. 111, 054302 (2012).
17. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys 112, 6472 (2000).
18. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. N., and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).
19. C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990).
20. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, and K. Tanabe, J. Am. Chem. Soc. 124, 104 (2002).

Data & Media loading...


Article metrics loading...



The morphologies of graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWNTs) are investigated using molecular-dynamics (MD) simulation. The GNRs are assumed to be hydrogen-terminated and formed by connecting polycyclic aromatic hydrocarbons, perylene or coronene molecules. The combined structures consisting of a GNR and an encapsulating SWNT are equilibrated at room temperature. It is shown that if the diameter of a SWNT is larger than the sum of the width of the GNR and twice the length of a C-H bond, a twisted GNR is obtained, whereas if the diameter of a SWNT is smaller than the sum of the two, the cross section of the SWNT cannot maintain its original circular shape and elliptically distorts, and a non-twisted GNR or a twisted GNR of long pitch is obtained. The estimated pitch of a regularly-twisted GNR agrees with the experimentally observed one in order of magnitude.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd