Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Dieny, “Spin valves,” In Magnetoelectronics, Ed. M. Johnson (Elsevier, Amsterdam, 2004), p. 67 (396).
2. U. Hartman, Ed., “Magnetic Multilayers and Giant Magnetoresistance,” Fundamentals and Industrial Applications (Springer-Verlag, Berlin, 2000), p. 320.
3. W. Clemens, H. A. M. van den Berg, G. Rupp, W. Schelter, M. Vieth, J. Wecker, J. Appl. Phys. 81, 4310 (1997).
4. A. V. Svalov, P. A. Savin, G. V. Kurlyandskaya, J. Gutiérrez, J. M. Barandiarán, and V. O. Vas'kovskiy, IEEE Trans. Magn. 38, 2782 (2002).
5. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
6. M. Koguchi, H. Kakibayashi, R. Nakatani, Jpn. J. Appl. Phys. 32, 4814 (1993).
7. H. Lefakis, T. C. Huang, and P. Alexopoulos, J. Appl. Phys. 64, 5667 (1988).
8. S. L. Cohen, M. A. Russak, J. M. Baker, T. R. McGuire, G. J. Scilla, S. M. Rossnagel, J. Vac. Sci. Technol. A 6, 918 (1988).
9. J. M. Daughton, J. Appl. Phys. 81, 3758 (1997).
10. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. Deherrera, IEEE Trans. Magn. 35, 2814 (1999).
11. E. Gapihan, R. C. Sousa, J. Herault, C. Papusoi, M. T. Delaye, B. Dieny, I. L. Prejbeanu, C. Ducruet, C. Portemont, C. Mackay, and J.-P. Nozieres, IEEE Trans. Magn. 46, 2486 (2010).
12. A. Choukh, IEEE Trans. Magn. 33, 3676 (1997).
13. K.-Y. Kim, H.-C. Choi, C.-Y. You, and J.-S. Lee, J. Magn. 13, 97 (2008).
14. M. Xu, Z. Lu, T. Yang, C. Liu, S. Cui, Z. Mai, W. Lai, Q. Jia, and W. Zheng, J. Appl. Phys. 92, 2052 (2002).
15. K.-Y. Kim, H.-C. Choi, J.-H. Shim, D.-H. Kim, C.-Y. You, and J.-S. Lee, IEEE Trans. Magn., 45, 2766 (2009).
16. V. Ng, F. H. Chen, A. O. Adeyeye, J. Magn. Magn. Mater. 260, 53 (2003).
17. K.-Y. Kim, H.-C. Choi, C.-Y. You, and J.-S. Lee, J. Appl. Phys. 105, 07D715 (2009).
18. J. H. Lee, S. J. Kim, C. S. Yoon, C. K. Kim, B. G. Park, and T. D. Lee, J. Appl. Phys. 92, 6241 (2002).
19. K.-C. Chen, Y. H. Wu, K.-M. Wu, L. Horng, and S. L. Young, J. Appl. Phys. 101, 09E516 (2007).
20. F. Y. Yang and C. L. Chien, Phys. Rev. Lett. 85, 2597 (2000).
21. M. G. Blamire, M. Ali, C.-W. Leung, C. H. Marrows, and B. J. Hickey, Phys. Rev. Lett. 98, 217202 (2007).
22. S. M. Yoon, J. J. Lim, Y. W. Lee, V. K. Sankaranarayanan, C. G. Kim, and C. O. Kim, Phys. stat. sol. (a) 201, 1680 (2004).
23. V. K. Sankaranarayanan, S. M. Yoon, D. Y. Kim, C. O. Kim, and C. G. Kim, J. Appl. Phys. 96, 7428 (2004).
24. D. N. H. Nam, W. Chen, K. G. West, D. M. Kirkwood, J. Lu, and S. A. Wolf, Appl. Phys. Lett. 93, 152504 (2008).
25. N. Amos, R. Fernandez, R. Ikkawi, B. Lee, A. Lavrenov, A. Krichevsky, D. Litvinov, and S. Khizroev, J. Appl. Phys. 103, 07E732 (2008).
26. A. V. Svalov, E. Fernandez, A. Garcia-Arribas, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, Appl. Phys. Lett. 100, 162410 (2012).
27. H. Lu, J. F. Bi, K. L. Teo, T. Liew, and T. C. Chong, J. Appl. Phys. 107, 09D717 (2010).
28. J. F. Ding, Y. F. Tian, W. J. Hu, W. N. Lin, and T. Wu, Appl. Phys. Lett. 102, 032401 (2013).
29. M. S. Lund, W. A. A. Macedo, Kai Liu, J. Nogués, Ivan K. Schuller, and C. Leighton, Phys. Rev. B 66, 054422 (2002).
30. S. T. Halloran, F. C. S. da Silva, H. Z. Fardi, and D. P. Pappas, J. Appl. Phys. 102, 033904 (2007).
31. T. Q. Hung, S. Oh, B. Sinha, J.-R. Jeong, D.-Y. Kim, and Ch. Kim, J. Appl. Phys. 107, 09E715 (2010).

Data & Media loading...


Article metrics loading...



FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd