Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4821110
1.
1. Q. Tang and Z. Zhou, Materials Progress in Materials Science 58, 12441315 (2013).
http://dx.doi.org/10.1016/j.pmatsci.2013.04.003
2.
2. Q. Tang, Z. Zhou, and Z. Chen, Nanoscale 5, 4541 (2013).
http://dx.doi.org/10.1039/c3nr33218g
3.
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4. V. Hung Nguyen, F. Mazzamuto, A. Bournel, and P. Dollfus, J. Phys. D: Appl. Phys. 45, 325104 (2012).
http://dx.doi.org/10.1088/0022-3727/45/32/325104
5.
5. V. V. Ilyasov and I. V. Ershov, Physics of the Solid State 11, 54 (2012).
6.
6. G. Giovanetti, P. A. Khomyakov, G. Brocks, D. J. Kelly, and J. Brink, Phys.Rev. B: Condens. Matter 76, 7 (2007).
7.
7. M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 81, 081408R (2010).
http://dx.doi.org/10.1103/PhysRevB.81.081408
8.
8. Jingzhe Chen, Marco Vanin, Yibin Hu, and Hong Guo, Phys. Rev. B 86, 075146 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075146
9.
9. Katsunori Wakabayashi and Sudipta Dutta, Solid State Commun. 152, 1420 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.025
10.
10. H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B: Condens. Matter 75, 155115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155115
11.
11. D. Usachov, V. K. Adamchuk, D. Haberer, A. Grneis, H. Sashdev, A. B. Preobrajenski, C. Laubschat, and D. V. Vyalikh, Phys. Rev. B 82, 075415 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075415
12.
12. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, Appl.Phys.Lett. 99, 232104 (2011).
http://dx.doi.org/10.1063/1.3665405
13.
13. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotechnol. 5, 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
14.
14. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chi-arotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
15.
15. P. Hohonberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
16.
16. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
17.
17. A. D. Corso, A. Pasquarello, and A. Baldereschi, Phys. Rev. B 56, R11369 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R11369
18.
18. S. S. Yu, W. T. Zheng, Q. B. Wen, and Q. Jiang, Carbon 46, 537 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.01.006
19.
19. J. C. Charlier, X. Gonze, and J. P. Michenaud, Europhys. Lett. 28, 403 (1994).
http://dx.doi.org/10.1209/0295-5075/28/6/005
20.
20. G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8551
21.
21. W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu, and Q. Q. Zheng, Phys. Rev. B 67, 014108 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.014108
22.
22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
23.
23. J. F. Dobson, K. McLennan, A. Rubio, J. Wang, T. Gould, H. M. Le, and B. P. Dinte, Aust. J. Chem. 54, 513 (2002).
http://dx.doi.org/10.1071/CH01052
24.
24. H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.126402
25.
25. S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
26.
26. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comput. Chem. 30, 934 (2009).
http://dx.doi.org/10.1002/jcc.21112
27.
27. T. Jayasekera, S. Xu, K. Kim, and M. B. Nardelli, Phys. Rev. B. 84, 035442 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035442
28.
28. P. Xu, Q. Tang, and Z. Zhou, Nanotechnology 24, 305401 (2013).
http://dx.doi.org/10.1088/0957-4484/24/30/305401
29.
29. Y. Li, W. Zhang, M. Morgenstern, and R. Mazzarello, J. Phys.: Condens. Matter. 1, 1210 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4821110
Loading
/content/aip/journal/adva/3/9/10.1063/1.4821110
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4821110
2013-09-05
2016-12-03

Abstract

The results of DFT (GGA-PBEsol) and DFT(PBE)-D2 study of the band structure of zigzag graphene nanoribbons on hexagonal nitride boron 8-ZGNR/h-BN(0001) are presented, suitable as potential base for new materials for spintronics. It offers a study of regularities in the changes of the valence band electron structure and the induction of the energy gap in the series 8-ZGNR → 8-ZGNR/h-BN(0001) → graphene/h-BN(0001). The peculiarities of the spin state at the Fermi level, the roles of the edge effect and the effect of substrate in formation of the band gap in 8-ZGNR/h-BN(0001) system are discussed. Our calculations shown that vdW-correction plays an important role in the adsorption of GNR on h-BN and results in reduction of the interplanar distances in equilibrium systems ZGNRs/h-BN(0001). As a result of the structural changes we have obtained new values of the energy gap in the 8-ZGNR-AF and 8-ZGNR-AF/h-BN(0001) systems. The paper demonstrates appearance of 600 meV energy gap in the 8-ZGNR/h-BN(0001) interface. The contributions of nanoribbon edges and the substrate in formation of the gap have been differentiated for the first time. The estimations of local magnetic moments on carbon atoms are made. Shown that in case of ferromagnetic ordering substrate presense causes insignificant splitting of the bands. The splitting reached only (14-28 meV). Since the electronic states of a suspended GNR in point (k=π) are degenerate near the Fermi level, we can assume that the above splitting in 8-ZGNR/h-BN(0001) is only determined by the contribution of the h-BN(0001) substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4821110.html;jsessionid=bH78sM2bcDHr9FlQlo7hFrkN.x-aip-live-06?itemId=/content/aip/journal/adva/3/9/10.1063/1.4821110&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4821110&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4821110'
Right1,Right2,Right3,