Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today 9, 18 (2006).
2. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
3. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001).
4. S. K. Lim, S. Crawford, G. Haberfehlner, and S. Gradecak, Nano Lett. 13, 331 (2013).
5. F. M. Ross, Rep. Prog. Phys. 73, 114501 (2010).
6. J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, and L. J. Lauhon, J. Mater. Chem. 19, 849 (2009).
7. V. Schmidt, J. V. Wittemann, and U. Gosele, Chem. Rev. 110, 361 (2010).
8. A. Potie, T. Baron, F. Dhalluin, G. Rosaz, B. Salem, L. Latu-Romain, M. Kogelschatz, P. Gentile, F. Oehler, L. Montes, J. Kreisel, and H. Roussel, Nanoscale Res. Lett. 6, 187 (2011).
9. Y. Mizuyoshi, R. Yamada, T. Ohishi, Y. Saito, T. Koyama, Y. Hayakawa, T. Matsuyama, and H. Tatsuoka, Thin Solid Films 508, 70 (2006).
10. Y. Souno, Y. Maeda, H. Tatsuoka, and H. Kuwabara, J. Cryst. Growth 229, 527 (2001).
11. H. Tatsuoka, T. Koga, K. Matsuda, Y. Nose, Y. Souno, H. Kuwabara, P. D. Brown, and C. J. Humphreys, Thin Solid Films 381, 231 (2001).
12. J. Hu, T. Kurokawa, T. Suemasu, S. Takahara, M. Itakura, and H. Tatsuoka, Phys. stat. sol. (a) 206, 233 (2009).
13. H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diagrams 4, 190 (1982).
14. T. B. Massalski (Ed.) Binary Alloy Phase Diagram, Second edition, ASM International, 1990.
15. O. Kubaschewski and C. B. Alcock, International Series on Materials Science and Technology: Metallurgical Thermo-Chemistry, 5th ed., Vol. 24 (Pergamon Press, Oxford, 1979), p. 294, 310.
16. S. Okada, T. Shishido, M. Ogawa, F. Matsukawa, Y. Ishizawa, K. Nakajima, T. Fukuda, and T. Lundstrom, J. Cryst. Growth 229, 532 (2001).
17. E. Meng, W. Li, K. Nakane, Y. Shirahashi, and H. Tatsuoka, submitted to phys. stat. sol. (c).
18. G. Zhang, P. Jayavel, T. Koyama, M. Kumagawa, and Y. Hayakawa, J. Appl. Phys. 97, 023518 (2005).

Data & Media loading...


Article metrics loading...



The shape modification of Si nanowires is demonstrated using faceted solid silicide catalysts. The Si nanowires were grown on Si(111) substrates covered with Au as a catalyst using MnCl and Si powders as source materials. The solid silicide catalysts were nucleated and formed in the Au-Si catalyst solution at the top of the nanowires during the growth. The faceted solid silicides grew larger with increased growth time and played a role as a solid catalyst. The faceted shape of the catalyst defines the shape of the faceted Si nanowire. The squared Si nanowires were grown with the growth direction of Si[111] and the sidewalls of {110} and {211} planes. The growth evolution of the faceted Si nanowires occurs by a vapor-liquid-solid mechanism followed by the silicide vapor-solid-solid mechanism.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd