Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4821276
1.
1. P. Ravadgar, R. H. Horng, and S. L. Ou, Appl. Phys. Lett. 101, 231911 (2012).
http://dx.doi.org/10.1063/1.4769905
2.
2. C. Mion, J. F. Muth, E. A. Preble, and D. Hanser, Appl. Phys. Lett. 89, 092123 (2006).
http://dx.doi.org/10.1063/1.2335972
3.
3. S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
http://dx.doi.org/10.1063/1.114359
4.
4. M. H. Kim, M. Oshima, H. Kinoshita, Y. Shirakura, K. Miyamura, J. Ohta, A. Kobayashi, and H. Fujioka, Appl. Phys. Lett. 89, 031916 (2006).
http://dx.doi.org/10.1063/1.2227616
5.
5. L. Neumann, J. W. Gerlach, and B. Rauschenbach, Thin Solid Films 520, 3936 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.02.004
6.
6. S. Dasgupta, Nidhi, F. Wu, J. S. Speck, and U. K. Mishra, Jpn. J. Appl. Phys. 51, 115503 (2012).
http://dx.doi.org/10.1143/JJAP.51.115503
7.
7. Z. J. Xu, L. X. Zhang, H. T. He, J. N. Wang, and M. H. Xie, J. Appl. Phys. 110, 093514 (2011).
http://dx.doi.org/10.1063/1.3658850
8.
8. K. Yamane, M. Ueno, H. Furuya, N. Okada, and K. Tadatomo, J. Cryst. Growth 358, 1 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.07.038
9.
9. A. Guillén-Cervantes, Z. Rivera-Álvarez, M. López-López, A. Ponce-Pedraza, C. Guarneros, and V. M. Sánchez-Reséndiz, Appl. Surf. Sci. 258, 1267 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.09.089
10.
10. D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 67, 1541 (1995).
http://dx.doi.org/10.1063/1.114486
11.
11. M. Kumar, B. Roul, T. N. Bhat, M. K. Rajpalke, and S. B. Krupanidhi, Appl. Phys. Exp. 5, 085202 (2012).
http://dx.doi.org/10.1143/APEX.5.085202
12.
12. R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, Appl. Phys. Lett. 71, 102 (1997).
http://dx.doi.org/10.1063/1.119441
13.
13. S. Inoue, K. Okamoto, T. Nakano, J. Ohta, and H. Fujioka, Appl. Phys. Lett. 91, 201920 (2007).
http://dx.doi.org/10.1063/1.2815924
14.
14. Y. Kawaguchi, J. Ohta, A. Kobayashi, and H. Fujioka, Appl. Phys. Lett. 87, 221907 (2005).
http://dx.doi.org/10.1063/1.2137876
15.
15. X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004).
http://dx.doi.org/10.1063/1.1690469
16.
16. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, and S. Minagawa, J. Appl. Phys. 79, 3487 (1996).
http://dx.doi.org/10.1063/1.361398
17.
17. L. Ying-Ying, Z. Jun, L. Wen-Bo, H. Lan-Zhong, Z. Ying, and L. Yan-Rong, Chin. Phys. B 20, 108102 (2011).
http://dx.doi.org/10.1088/1674-1056/20/10/108102
18.
18. P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, Solid-State Electronics 47, 559 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00413-6
19.
19. J. Ohta, H. Fujioka, and M. Oshima, Appl. Phys. Lett. 83, 3060 (2003).
http://dx.doi.org/10.1063/1.1617376
20.
20. J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Appl. Phys. Lett. 83, 3075 (2003).
http://dx.doi.org/10.1063/1.1618379
21.
21. X. H. Zheng, H. Chen, Z. B. Yan, Y. J. Han, H. B. Yu, D. S. Li, Q. Huang, and J. M. Zhou, J. Cryst. Growth 255, 63 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01211-9
22.
22. P. Gay, P. B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).
http://dx.doi.org/10.1016/0001-6160(53)90106-0
23.
23. E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, J. Phys. D : Appl. Phys. 41, 155317 (2008).
http://dx.doi.org/10.1088/0022-3727/41/15/155317
24.
24. M. A. Moram, C. C. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 106, 073513 (2009).
http://dx.doi.org/10.1063/1.3225920
25.
25. M. A. Moram and M. E. Vickers, Rep. Prog. Phys. 72, 036502 (2009).
http://dx.doi.org/10.1088/0034-4885/72/3/036502
26.
26. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1695
27.
27. R. Alayan, L. Arnaud, M. Broyer, E. Cottancin, J. Lermé, J. L. Vialle, and M. Pellarin, Phys. Rev. B 73, 125444 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125444
28.
28. H. Harima, J. Phys. Condens. Matter 14, R967 (2002).
http://dx.doi.org/10.1088/0953-8984/14/38/201
29.
29. X. Hai-Ying, N. Ping-Juan, and X. Yu-Xin, Chin. Phys. B 21, 077801 (2012).
http://dx.doi.org/10.1088/1674-1056/21/7/077801
30.
30. P. Merel, M. Chaker, M. Tabbal, and H. Pepin, Appl. Surf. Sci. 177, 165 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00203-3
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4821276
Loading
/content/aip/journal/adva/3/9/10.1063/1.4821276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4821276
2013-09-10
2016-12-04

Abstract

Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4821276.html;jsessionid=940NLk7zkRuKG8bnPYH7Ivje.x-aip-live-06?itemId=/content/aip/journal/adva/3/9/10.1063/1.4821276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4821276&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4821276'
Right1,Right2,Right3,