Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4821281
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. Mikhail I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, 2012).
3.
3. Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang, Nature 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
4.
4. Jingwei Bai, Xing Zhong, Shan Jiang, Yu Huang, and Xiangfeng Duan, Nat. Nanotechnol. 5, 190 (2010).
http://dx.doi.org/10.1038/nnano.2010.8
5.
5. Melinda Y. Han, Barbaros Özyilmaz, Yuanbo Zhang, and Philip Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
6.
6. Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
7.
7. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
8.
8. Ado Jorio, Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (WILEY-VCH Verlag GmbH & Co. KGaA, 2011).
9.
9. PingHeng Tan, YuanMing Deng, Qian Zhao, and WenChao Cheng, “The intrinsic temperature effect of the raman spectra of graphite,” Appl. Phys. Lett 74, 1818 (1999).
http://dx.doi.org/10.1063/1.123096
10.
10. L. G. Cançado, M. A. Pimenta, B. R. A. Neves, G. Medeiros-Ribeiro, Toshiaki Enoki, Yousuke Kobayashi, Kazuyuki Takai, Ken-ichi Fukui, M. S. Dresselhaus, R. Saito, and A. Jorio, “Anisotropy of the raman spectra of nanographite ribbons,” Phys. Rev. Lett. 93, 047403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.047403
11.
11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
12.
12. Sunmin Ryu, Janina Maultzsch, Melinda Y. Han, Philip Kim, and Louis E. Brus, “Raman spectroscopy of lithographically patterned graphene,” ACS Nano 5, 4123 (2011).
http://dx.doi.org/10.1021/nn200799y
13.
13. J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos-Gómez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus, and M. Terrones, “Thermal stability studies of cvd-grown graphene nanoribbons: Defect annealing and loop formation,” Chem. Phys. Lett. 469, 177 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.12.082
14.
14. Wencai Ren, Riichiro Saito, Libo Gao, Fawei Zheng, Zhongshuai Wu, Bilu Liu, Masaru Furukawa, Jinping Zhao, Zongping Chen, and Hui-Ming Cheng, “Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced raman spectroscopy,” Phys. Rev. B 81, 035412 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035412
15.
15. D. Bischoff, J. Güttinger, S. Drscher, T. Ihn, K. Ensslin, and C. Stampfer, “Raman spectroscopy on etched graphene nanoribbons,” J. Appl. Phys. 109, 073710 (2011).
http://dx.doi.org/10.1063/1.3561838
16.
16. Rong Yang, Zhiwen Shi, Lianchang Zhang, Dongxia Shi, and Guangyu Zhang, “Observation of raman g-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges,” Nano Lett. 11, 4083 (2011).
http://dx.doi.org/10.1021/nl201387x
17.
17. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433 (2009).
http://dx.doi.org/10.1021/nl8032697
18.
18. Liming Xie, Hailiang Wang, Chuanhong Jin, Xinran Wang, Liying Jiao, Kazu Suenaga, and Hongjie Dai, J. Am. Chem. Soc. 133, 10394 (2011).
http://dx.doi.org/10.1021/ja203860a
19.
19. L. G. Cançado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, Phys. Rev. Lett. 93, 247401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.247401
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4821281
Loading
/content/aip/journal/adva/3/9/10.1063/1.4821281
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4821281
2013-09-10
2016-09-28

Abstract

We fabricated graphene nanoribbons (GNRs) chemically derived from expandable graphite. All GNRs exhibit atomically smooth edges that extended over their entire length. We investigated four of the fabricated GNRs using Raman spectroscopy. Two of the investigated GNRs show Raman spectra with a missing D-band peak, while D-band peaks can be clearly observed for the other two GNRs. The two GNRs which do not show the D-band peak are GNRs with zigzag edges, and the two other GNRs which show clearly the D-band peaks are possibly GNRs with armchair edges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4821281.html;jsessionid=jNSpki9c1cXZsuIvxCWQ-Z1L.x-aip-live-03?itemId=/content/aip/journal/adva/3/9/10.1063/1.4821281&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4821281&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4821281'
Right1,Right2,Right3,