Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
3. Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 82, 57002 (2008).
4. Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, and Z. X. Zhao, Mater. Res. Innov. 12, 1 (2008).
5. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
6. T. Yildirim, Phys. Rev. Lett. 101, 057010 (2008).
7. L. J. Li, Y. K. Li, Z. Ren, Y. K. Luo, X. Lin, M. He, Q. Tao, Z. W. Zhu, G. H. Cao, and Z. A. Xu, Phys. Rev. B 78, 132506 (2008).
8. P. Cheng, L. Fang, H. Yang, X. Zhu, G. Mu, H. Luo, Z. Wang, and H. H. Wen, Sci. China G51, 719 (2008).
9. V. P. S. Awana, R. S. Meena, A. Pal, A. Vajpayee, K. V. R. Rao, and H. Kishan, Eur. Phys. J. B 79, 139 (2011).
10. I. Nowik, I. Felner, V. P. S. Awana, Arpita Vajpayee, and H. Kishan, J. Phys. Cond. Matt. Fast Track Commun. 20, 292201 (2008).
11. V. P. S. Awana, Arpita Vajpayee, Anand Pal, Monika Mudgel, R. S. Meena, and H. Kishan, J Supercond Nov Magn 22, 623 (2009).
12. Anand Pal, S. S. Mehdi, Mushahid Husain, and V. P. S. Awana, Solid State Sciences 15, 123 (2013).
13. A. Narduzzo, M. S. Grbić, M. Požek, A. Dulčić, D. Paar, A. Kondrat, C. Hess, I. Hellmann, R. Klingeler, J. Werner, A. Köhler, G. Behr, and B. Büchner, Phys. Rev. B 78, 012507 (2008).
14. F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, A. S. Jin, R. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Nature 453, 903 (2008).
15. C. Senatore, R. Flukiger, M. Cantoni, G. Wu, R. H. Liu, and X. H. Chen, Phys. Rev. B 78, 054514 (2008).
16. X. L. Wang, S. R. Ghorbani, G. Peleckis, and S. X. Dou, Adv. Mater. 21, 236 (2008).
17. R. Zhi-An, L. Wei, Y. Jie, Y. Wei, S. X. Li, Z. Cai, C. G. Can, D. X. Li, S. L. Ling, Z. Fang, and Z. Z. Xian, Chinese Phys. Lett. 25, 2215 (2008).
18. M. Tropeano, C. Fanciulli, C. Ferdeghini, D. Marrè, A. S. Siri, M. Putti, A. Martinelli, M. Ferretti, A. Palenzona, M. R. Cimberle, C. Mirri, S. Lupi, R. Sopracase, P. Calvani, and A. Perucchi, Super. Sci. & Technol. 25, 034004 (2009).
19. L. Wang, Y. Qi, D. Wang, X. Zhang, and Y. Ma, Superconductor Sci. and Tech. 23, 025027 (2010).
20. Y. Matsumoto, J. Hombo, and Y. Yamaguchi, Appl. Phys. Lett. 56, 1585 (1990).
21. J. H. Durell, C.-B Eom, A. Gurvich, E. E. Hellstrom, C. Tarantini, and D. C. Larbalestier, Rep. Prog. Phys. 74, 124511 (2011).
22. V. P. S. Awana, Arpita Vajpayee, Monika Mudgel, V. Ganesan, A. M. Awasthi, G. L. Bhalla, and H. Kishan, Eur. Phys. J. B 62, 281 (2008).
23. N. P. Liyanawaduge, S. K. Singh, A. Kumar, R. Jha, B. S. B. Karunarathne, and V. P. S. Awana, Supercond. Sci. Technol. 25, 035017 (2012).
24. E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
25. A. Gurevich, Rep. Prog. Phys. 74, 124501 (2011).
26. J. J. Jaroszynski, F. Hunte, L. Balicas, Jo Youn-jung, I. Rai Cevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008).
27. C. Shekhar, Amit Srivastava, Pramod Kumar, Pankaj Srivastava, and O. N. Srivastava, Supercond. Sci. Technol. 25, 045004 (2012).
28. L. Wang, Z. Gao, Y. Qi, X. Zhang, D. Wang, and Y. Ma, Supercond. Sci. Technol. 22, 015019 (2009).
29. M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39, 6615 (1989).
30. G. Bonsignore, A. Agliolo Gallitto, M. Li Vigni, J. L. Luo, G. F. Chen, N. L. Wang, and D. V. Shovkun, J. Low. Temp. Phys. 162, 40 (2011).
31. A. Agliolo Gallitto, G. Bonsignore, M. Bonura, and M. L. Vigni, J. Phys. Conf. Series 234, 012001 (2010).
32. L. Ding, C. He, J. K. Dong, T. Wu, R. H. Liu, X. H. Chen, and S. Y. Li, Phys. Rev. B 77, 180510 (2008).
33. M. Tropeano, A. Martinelli, A. Palenzona, E. Bellingeri, E. Galleani d’Agliano, T. D. Nguyen, M. Affronte, and M. Putti, Phys. Rev. B 78, 094518 (2008).
34. V. P. S. Awana, Anand Pal, M. Husain, and H. Kishan, J Supercond Nov Magn 24, 151 (2011).

Data & Media loading...


Article metrics loading...



This report fairly underlines the magneto-transport, thermal properties characterization and bulk superconductivity in the FeAs-based SmFeAsOF. The phase formation and structure are confirmed by Rietveld analysis of room temperature powder X-ray diffraction () data. Electron microscopy was employed to unravel the micro structural details, such as perfection of the lattice and the grain morphology including size and boundaries. The electrical and magnetic measurements have been carried out to confirm the bulk superconductivity and understand the nature of electrical transport in the normal and superconducting state. The intra-grain critical current density ( ) with applied magnetic field is calculated from isothermal magnetization () plots using conventional Bean critical state model. Superconductivity is observed at transition temperature (T) above 55 K without (high pressure high temperature) synthesis route. The value of is found to be around 5.26 × 104 A/cm2 at 5 K in zero field. The dependence of thermally activated flux flow energy (U/k) on the applied magnetic field has been observed. susceptibility measurements were performed for 55 K superconducting SmFeAsOF sample at various amplitude of applied drive field and its granular nature is confirmed. The parent compound SmFeAsO is found to be magnetic with Fe spin density wave () like order below 150 K, on the other hand the F doped SmFeAsOF sample is bulk superconducting at below 55 K. Both Fe () at 150 K for SmFeAsO and 55 K superconductivity in case of SmFeAsOF sample has confirmed by Specific heat [ ()] measurement too. Further Sm orders anti-ferro-magnetically at 4.5 K for non-superconducting and at 3.5 K for superconducting samples, also the entropy change is reduced significantly for the later than the former. Summarily complete physical property characterization for both non-superconducting SmFeAsO and 55 K superconductor SmFeAsOF samples is provided and discussed in the current article.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd