Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4821336
1.
1. H. Hoshtadt, Integral Equations (Wiley, New York, 1973).
2.
2. J. Mathews and R. L. Walker, Mathematical Methods of Physics (W. A. Benjamin, Inc., Menlo Park, California, 1973).
3.
3. F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1958).
4.
4. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products Academic, (New York, 1965).
5.
5. N. von Der Heydt, “Schrödinger equation with non-local potential. I. The resolvent,” Ann. Phys. (Leipzig) 29, 309324 (1973).
http://dx.doi.org/10.1002/andp.19730290404
6.
6. A. Grbic and G. V. Eleftheriades, “Negative Refraction, Growing Evanescent Waves, and Sub-Diffraction Imaging in Loaded Transmission-Line Metamaterials,” IEEE Transactions on microwave theory and techniques 51(12), 229720305 (2003).
http://dx.doi.org/10.1109/TMTT.2003.820162
7.
7. He-Xiu Xu, Guang-Ming Wang, Yuan-Yuan Lv, Mei-Qing Qi, Xi Gao, and Shuo Ge, “Multyfrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit,” Progress In Electromagnetics Research 137, 703725, (2013).
8.
8. F. Hernández-Bautista, C. A. Vargas, and J. M. Velázquez-Arcos, Negative refractive index in split ring resonators, Rev. Mex. Fis. Vol. 59, no. 1, pp. 139144, January-February 2013, ISSN: 0035-00IX.
9.
9. J. M. Velázquez-Arcos, “Fredholm's equations for subwavelength focusing,” J. Math. Phys. 53(10), 103520 (2012).
http://dx.doi.org/10.1063/1.4759502
10.
10. J. M. Velázquez-Arcos, J. Granados-Samaniego, and C. A. Vargas, Communication theory and resonances on electromagnetic systems, Electromagnetics in Advanced Applications (ICEAA), 2012 International Conference pp. 392395, 2–7 Sept. 2012, (IEEE Cape Town).
http://dx.doi.org/10.1109/ICEAA.2012.6328657
11.
11. Xiang-kun Kong, Shao-bin Liu, Hai-feng Zhang, Bo-rui Bian, Hai-ming Li et al., “Evanescent wave decomposition in a novel resonator comprising unmagnetized and magnetized plasma layers,” Physics of Plasmas 20, 043515 (2013).
http://dx.doi.org/10.1063/1.4802807
12.
12. J. M. Velázquez-Arcos, F. Pérez-Martínez, C. A. Rivera-Salamanca, and J. Granados-Samaniego, “On the application of a recently discovered electromagnetic resonances to communication systems,” IJETAE 3(1), 466471 (2013), Website: www.ijetae.com, ISSN 2250–2459.
13.
13. C. G. Bollini, O. Civitarese, A. L. De Paoli, and M. C. Rocca, J. Math. Phys. 37, 4235 (1996).
http://dx.doi.org/10.1063/1.531633
14.
14. J. M. Velázquez-Arcos, C. A. Vargas, J. L. Fernández-Chapou, and J. Granados-Samaniego, Resonances on Discrete Electromagnetic Time Reversal Applications, Electromagnetics in Advanced Applications (ICEAA), 2011 International Conference pp.167–170, 12–16 Sept. 2011.
http://dx.doi.org/10.1109/ICEAA.2011.6046297
15.
15. A. Mondragón, E. Hernández, and J. M. Velázquez-Arcos, “Resonances and Gamow states in non-local potentials,” Ann. Phys. (Leipzig) 48, 503616 (1991).
http://dx.doi.org/10.1002/andp.19915030802
16.
16. J. M. Velázquez-Arcos, C. A. Vargas, J. L. Fernández-Chapou, and A. L. Salas-Brito, “On computing the trace of the kernel of the homogeneous Fredholm's equation,” J. Math. Phys. 49, 103508 (2008).
http://dx.doi.org/10.1063/1.3003062
17.
17. R. de la Madrid, “The rigged Hilbert space approach to the Gamow states,” J. Math. Phys. 53(10), 102113 (2012).
http://dx.doi.org/10.1063/1.4758925
18.
18. J. M. Velázquez-Arcos, J. Granados-Samaniego, J. L. Fernandez-Chapou, and C. A. Vargas, Vector generalization of the discrete Time Reversal formalism brings an electromagnetic application on overcoming the diffraction limit, Electromagnetics in Advanced Applications (ICEAA), 2010 International Conference pp.264–267, 20–24 Sept. 2010, (IEEE Sidney).
http://dx.doi.org/10.1109/ICEAA.2010.5653059
19.
19. H. Kato and M. Inoue, “Reflection-mode operation of one-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices,” J.Appl. Phys. 91, 70177019 (2002).
http://dx.doi.org/10.1063/1.1452199
20.
20. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J.Appl. Phys.