Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4821548
1.
1. E. Verwey, Nature 144, 327 (1939).
http://dx.doi.org/10.1038/144327b0
2.
2. Q.-C. Sun, H. Sims, D. Mazumdar, J. X. Ma, B. S. Holinsworth, K. R. O'Neal, G. Kim, W. H. Butler, A. Gupta, and J. L. Musfeldt, Phys. Rev. B 86, 205106 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205106
3.
3. M. Foerster, F. Rigato, K. Bouzehouane, and J. Fontcuberta, J. Phys. D: Appl. Phys. 43, 295001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/29/295001
4.
4. U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J.-P. Contour, S. Fusil, J.-F. Bobo, J. Fontcuberta, A. Barthélémy, and A. Fert, Appl. Phys. Lett. 88, 082505 (pages 3) (2006).
http://dx.doi.org/10.1063/1.2172647
5.
5. A. V. Ramos, M.-J. Guittet, J.-B. Moussy, R. Mattana, C. Deranlot, F. Petroff, and C. Gatel, App. Phys. Lett. 91, 122107 (pages 3) (2007).
http://dx.doi.org/10.1063/1.2787880
6.
6. J. G. Haenen, W. Visscher, and E. Barendrecht, J. Appl. Electrochem. 15, 29 (1985).
http://dx.doi.org/10.1007/BF00617738
7.
7. J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. I. Ríos, H. M. Palmer, C. Greaves, and F. J. Berry, J. Mater. Chem. 11, 3087 (2001).
http://dx.doi.org/10.1039/b103135j
8.
8. C. F. Windisch, G. J. Exarhos, K. F. Ferris, M. H. Engelhard, and D. C. Stewart, Thin Solid Films 398, 45 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01302-5
9.
9. G. J. Exarhos, C. F. Windisch, Jr., K. F. Ferris, and R. R. Owings, Appl. Phys. A: Mater. Sci. Process. 89, 9 (2007).
http://dx.doi.org/10.1007/s00339-007-4040-7
10.
10. C. F. Windisch, Jr., K. F. Ferris, G. J. Exarhos, and S. K. Sharma, Thin Solid Films 420, 89 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00740-X
11.
11. S. Holgersson and A. Karlsson, Z. Anorg. Allgem. Chem. 183, 384 (1929).
http://dx.doi.org/10.1002/zaac.19291830128
12.
12. P. Battle, A. Cheetham, and J. Goodenough, Mater. Res. Bull. 14, 1013 (1979).
http://dx.doi.org/10.1016/0025-5408(79)90066-7
13.
13. J.-G. Kim, D. Pugmire, D. Battaglia, and M. Langell, Applied surface science 165, 70 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00378-0
14.
14. P. Silwal, L. Miao, I. Stern, X. Zhou, J. Hu, and D. Ho Kim, Appl. Phys. Lett. 100, 032102 (2012).
http://dx.doi.org/10.1063/1.3676439
15.
15. M. N. Iliev, P. Silwal, B. Loukya, R. Datta, D. H. Kim, N. D. Todorov, N. Pachauri, and A. Gupta, J. Appl. Phys. (2013).
16.
16. O. Knop, K. Reid, Sutarno, and Y. Nakagawa, Can. J. Chem. 46, 3463 (1968).
http://dx.doi.org/10.1139/v68-576
17.
17. M. Lenglet, R. Guillamet, J. Dürr, D. Gryffroy, and R. Vandenberghe, Solid State Comm. 74, 1035 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90705-G
18.
18. F. K. Lotgering, Philips Res. Rep. 11, 337 (1956).
19.
19. P. A. Lee and T. Ramakrishnan, Reviews of Modern Physics 57, 287 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.287
20.
20. T. Okuda, T. Kimura, and Y. Tokura, Physical Review B 60, 3370 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.3370
21.
21. C. Zhang, X. Chen, C. Almasan, J. Gardner, and J. Sarrao, Physical Review B 65, 134439 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134439
22.
22. L. Maritato, C. Adamo, C. Barone, G. De Luca, A. Galdi, P. Orgiani, and A. Y. Petrov, Physical Review B 73, 094456 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094456
23.
23. D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Physical Review B 65, 094407 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.094407
24.
24. M. Ziese, Phys. Rev. B 68, 132411 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.132411
25.
25. D. Basov, B. Dabrowski, and T. Timusk, Phys. Rev. Lett. 81, 2132 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2132
26.
26.See supplementary material to this article http://dx.doi.org/10.1063/1.4821548 for the detailed description of the home-built spectrometer. [Supplementary Material]
27.
27. X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o vorakiat, L. Cheng, S. A. Cheong, H. Su, J.-X. Zhu, et al., Phys. Rev. Lett. 110, 067401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.067401
28.
28. R. Averitt and A. Taylor, Journal of Physics: Condensed Matter 14, R1357 (2002).
http://dx.doi.org/10.1088/0953-8984/14/50/203
29.
29. J. Lloyd-Hughes and T.-I. Jeon, Journal of Infrared, Millimeter, and Terahertz Waves 33, 871 (2012).
http://dx.doi.org/10.1007/s10762-012-9905-y
30.
30. C. F. Windisch, G. J. Exarhos, and S. K. Sharma, Journal of applied physics 92, 5572 (2002).
http://dx.doi.org/10.1063/1.1509838
31.
31. R. R. Owings, G. J. Exarhos, C. F. Windisch, P. H. Holloway, and J. G. Wen, Thin solid films 483, 175 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.01.011
32.
32. D. Emin, Physical Review B 48, 13691 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13691
33.
33. D. N. Basov, R. D. Averitt, D. Van Der Marel, M. Dressel, and K. Haule, Reviews of Modern Physics 83, 471 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.471
34.
34. K. Kim, J. Jung, and T. Noh, Physical review letters 81, 1517 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1517
35.
35. M. Quijada, J. Černe, J. Simpson, H. Drew, K. Ahn, A. Millis, R. Shreekala, R. Ramesh, M. Rajeswari, and T. Venkatesan, Physical Review B 58, 16093 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.16093
36.
36. C.-S. Cheng, M. Serizawa, H. Sakata, and T. Hirayama, Materials Chemistry and Physics 53, 225 (1998).
http://dx.doi.org/10.1016/S0254-0584(98)00044-3
37.
37. D. Ihle and B. Lorenz, Journal of Physics C: Solid State Physics 19, 5239 (1986).
http://dx.doi.org/10.1088/0022-3719/19/26/020
38.
38. M. P. Sarachik, E. Corenzwit, and L. D. Longinotti, Phys. Rev. 135, A1041 (1964).
http://dx.doi.org/10.1103/PhysRev.135.A1041
39.
39. T. C. Kuo and K. L. Wang, Appl. Phys. Lett. 59, 3399 (1991).
http://dx.doi.org/10.1063/1.105687
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4821548
Loading
/content/aip/journal/adva/3/9/10.1063/1.4821548
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4821548
2013-09-16
2016-12-09

Abstract

We have measured the terahertz-frequency optical conductivity of the epitaxial inverse spinel NiCoO films grown at different temperatures. The low-temperature-grown film exhibits a metallic behavior with ferrimagnetic ordering, while the high-temperature-grown film shows greatly suppressed magnetization and insulating behavior. Both films exhibit band-like coherent conduction at intermediate temperatures, albeit with very different carrier densities consistent with the proposed models of cation valencies in this mixed-valence material. Both films also display a crossover to incoherent transport at low temperatures, indicating a disorder-induced tendency toward localization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4821548.html;jsessionid=dWuu7YDd0Z2k84l-1jOFbVdH.x-aip-live-06?itemId=/content/aip/journal/adva/3/9/10.1063/1.4821548&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4821548&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4821548'
Right1,Right2,Right3,