Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. W. Yan, H. W. Zhao, and T. Kuriyagawa, Semicond. Sci. Technol. 24, 075018 (2009).
2. Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, and Z. Horita, Appl. Phys. Lett. 101, 121908 (2012).
3. K. Mylvaganam, L. C. Zhang, P. Eyben, J. Mody, and W. Vandervorst, Nanotechnology 20, 305705 (2009).
4. L. Zhang, T. Ohmura, K. Seikido, K. Nakajima, T. Hara, and K. Tsuzaki, Scripta Mater. 64, 919 (2011).
5. S. Ingole, A. Schwartzman, and H. Liang, J. Tribol. 129, 11 (2007).
6. T. Vodenitcharova and L. C. Zhang, Int. J. Solids and Struct. 40, 2989 (2003).
7. J. i. Jang, M. J. Lance, S. Q. Wen, T. Y. Tsui, and G. M. Pharr, Acta Mater. 53, 1759 (2005).
8. H. Huang, H. W. Zhao, C. L. Shi, L. Zhang, S. G. Wan, and C. Y. Geng, Materials 6, 1496 (2013).
9. R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, and J. Michler, Phys. Status Solidi A, 202, 2858 (2005).
10. M. Yoshino, T. Aoki, T. Shirakashi, and R. Komanduri, Int. J. Mech. Sci. 43, 335 (2001).
11. I. Zarudi, L. C. Zhang, and M. V. Swain, Appl. Phys. Lett. 82, 1027 (2003).
12. N. Fujisawa, S. Ruffell, J. E. Bradby, J. S. Williams, B. Haberl, and O. L. Warren, J. Appl. Phys. 105, 106111 (2009).
13. F. Ostlund, K. Rzepiejewska-Malyska, K. Leifer, L. M. Hale, Y. Y. Tang, R. Ballarini, W. W. Gerberich, and J. Michler, Adv. Funct. Mater. 19, 2439 (2009).
14. T. Namazu, Y. Isono, and T. Tanaka, J. Microelectromech S. 9, 450 (2000).
15. T. Jochum, I. E. Reimanis, M. J. Lance, and E. R. Fuller, J. Am. Ceram. Soc. 92, 857 (2009).
16. Y. B. Gerbig, C. A. Michaels, A. M. Forster, and R. F. Cook, Phys. Rev. B 85, 104102 (2012).
17. W. S. Lee, T. H. Chen, C. F. Lin, and S. L. Chang, Mater. Trans. 51, 1173 (2010).
18. J. W. Yan, H. Takahashi, X. H. Gai, H. Harada, J. Tamaki, and T. Kuriyagawa, Mat. Sci. Eng. A 423, 19 (2006).
19. S. M. Hues, C. F. Draper, K. P. Lee, and R. J. Colton, Rev. Sci. Instrum. 65, 1561 (1994).
20. H. Huang, H. W. Zhao, Z. C. Ma, L. L. Hu, J. Yang, G. Q. Shi, C. X. Ni, and Z. L. Pei, J. Manuf. Syst. 31, 76 (2012).
21. T. Y. Zhang, Y. J. Su, C. F. Qian, M. H. Zhao, and L. Q. Chen, Acta Mater. 48, 2843 (2000).

Data & Media loading...


Article metrics loading...



In this paper, a tension stress loading unit is designed to provide tension stress for brittle materials by combining the piezo actuator and the flexible hinge. The structure of the tension stress loading unit is analyzed and discussed via the theoretical method and finite element simulations. Effects of holding time, the installed specimen and hysteresis of the piezo actuator on output performances of the tension stress loading unit are studied in detail. An experiment system is established by combing the indentation testing unit and the developed tension stress loading unit to characterize indentation response of single crystal silicon under tension stress. Experiment results indicate that tension stress leads to increasing of indentation displacement for the same inden-tation load of single crystal silicon. This paper provides a new tool for studying indentation response of brittle materials under tension stress.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd