Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4823480
1.
1. F. Khan, Vandana, S. N. Singh, M. Husain, and P. K. Singh, Sol. Energy Mater. Sol.Cells. 100, 5760 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.04.024
2.
2. C-Y. Huang, Y-J. Yang, J-Y. Chen, C-H. Wang, Y-F. Chen, L-S. Hong, C-S. Liu, and C-Y. Wu, Appl. Phys. Lett. 97, 013503 (2010).
http://dx.doi.org/10.1063/1.3462319
3.
3. H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, and X. Zhao, Appl. Phys. Lett. 94, 063512 (2009).
http://dx.doi.org/10.1063/1.3082096
4.
4. W. Körner and C. Elsässer, Phys. Rev. B 81, 085324 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085324
5.
5. B-Z. Dong, G-J. Fang, J-F. Wang, W-J. Guan, and X-Z. Zhao, J. Appl. Phys. 101, 033713 (2007).
http://dx.doi.org/10.1063/1.2437572
6.
6. K. Ellmer, A. Klein, and B. Rech, Eds. Transparent Conductive Zinc Oxides: Basics and Applications in Thin Film Solar Cells (Springer, Berlin, 2007).
7.
7. Z. L. Pei, X. B. Zhang, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, Thin Solid Films 497, 2023 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.110
8.
8. J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, and B. H. Zhao, J. Appl. Phys. 100, 073714 (2006).
http://dx.doi.org/10.1063/1.2357638
9.
9. A. A. Ziabari and S. M. Rozati, Physica B 407, 45124517 (2012).
http://dx.doi.org/10.1016/j.physb.2012.08.024
10.
10. P-C. Yao, S-T. Hang, Y-S. Lin, W-T. Yen, and Y-C. Lin, Appl. Surf. Sci. 257, 14411448 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.08.064
11.
11. B. C. Mohanty, Y. H. Jo, D. H. Yeon, I. J. Choi, and Y. S. Cho, Appl. Phys. Lett. 95, 062103 (2009).
http://dx.doi.org/10.1063/1.3202399
12.
12. H. S. Lee, J. Y. Lee, T. W. Kim, D. W. Kim, and W. J. Cho, J. Mater. Sci. 39, 35253528 (2004).
http://dx.doi.org/10.1023/B:JMSC.0000026968.24617.f6
13.
13. S. Y. Hu, Y. C. Lee, J. W. Lee, J. C. Huang, J. L. Shen, and W. Water, Appl. Surf. Sci. 254, 15781582 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.07.134
14.
14. S. Maniv, W. D. Westwood, and E. Colombini, J. Vac. Sci. Technol. 20, 162170 (1982).
http://dx.doi.org/10.1116/1.571350
15.
15. B. B. He, Two-Dimensional X-Ray Diffraction (John Wiley & Sons, New Jersey, 2009).
16.
16. K. Mohanta and A. J. Pal, J. Appl. Phys. 105, 024507 (2009).
http://dx.doi.org/10.1063/1.3068190
17.
17. S. Majumdar, S. Chattopadhyay, and P. Banerji, Appl. Surf. Sci. 255, 61416144 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.01.067
18.
18. F. Chaabouni, M. Abaab, and B. Rezig, Superlattices and Microstructures 39, 171178 (2006).
http://dx.doi.org/10.1016/j.spmi.2005.08.070
19.
19. T. Hori, Gate Dielectrics and MOS ULSIs: Principle, Technologies, and Applications (Springer, Berlin, 1997).
20.
20. A. Kanjilal, L. Rebohle, W. Skorupa, and M. Helm, Appl. Phys. Lett. 94, 101916 (2009).
http://dx.doi.org/10.1063/1.3098474
21.
21. B. He, H. Z. Wang, Y. G. Li, Z. Q. Ma, J. Xu, Q. H. Zhang, C. R. Wang, H. Z. Xing, L. Zhao, and Y. C. Rui, J. Alloy. Compd. 581, 28 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.144
22.
22. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, Phys. Rev. B 83, 075430 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075430
23.
23. L. C. Chen and C. N. Pan, Eur. Phys. J. Appl. Phys. 44, 4346 (2008).
http://dx.doi.org/10.1051/epjap:2008153
24.
24. Y. Cui, Y. Tian, W. Liu, Y. Li, R. Wang, and T. Wu, AIP Adv. 1, 042129 (2011).
http://dx.doi.org/10.1063/1.3660322
25.
25. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, Appl. Surf. Sci. 257, 49064911 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.12.144
26.
26. H. Wang, M. H. Xu, J. W. Xu, M. F. Ren, and L. Yang, J. Mater. Sci. Mater. Electron. 21, 589594 (2010).
http://dx.doi.org/10.1007/s10854-009-9962-8
27.
27. P. Cuony, D. T. L. Alexander, I. Perez-Wurfl, M. Despeisse, G. Bugnon, M. Boccard, T. Soderstrom, A. Hesser-Wyser, C. Hebert, and C. Ballif, Adv. Mater. 24, 11821186 (2012).
http://dx.doi.org/10.1002/adma.201104578
28.
28. M. Dutta, and D. Basak, Appl. Phys. Lett. 92, 212112 (2008).
http://dx.doi.org/10.1063/1.2937124
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4823480
Loading
/content/aip/journal/adva/3/9/10.1063/1.4823480
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4823480
2013-09-20
2016-09-28

Abstract

We report on room temperature diode characteristics of ZnO:Al (AZO)/Si heterostructures by current-voltage measurements. In this study, with increasing AZO film thickness, systematic reduction in the turn-on potential (from 3.16 to 1.80 V) and the film stress are observed. Complementary capacitance-voltage studies reveal a decreasing trend in barrier height at the junction with increasing AZO film thickness. A gradual decrease in resistivity takes place with increasing AZO film thickness. Above observations are explained in the framework of AZO thickness dependent variation in grain size and in turn trap density at the grain boundaries influencing carrier transport across the adjacent grains.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4823480.html;jsessionid=QJAffR5QbQAo2cOXv0lj6eUY.x-aip-live-02?itemId=/content/aip/journal/adva/3/9/10.1063/1.4823480&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4823480&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4823480'
Right1,Right2,Right3,