Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4823482
1.
1. D. A. Czaplewski, J. Kameoka, R. Mathers, G. W. Coates, and H. G. Craighead, Appl. Phys. Lett. 83, 4836 (2003).
http://dx.doi.org/10.1063/1.1633008
2.
2. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, Proc. Natl. Acad. Sci. U. S. A. 103, 2480 (2006).
http://dx.doi.org/10.1073/pnas.0507681102
3.
3. M. R. Abidian, D.-H. Kim, and D. C. Martin, Adv. Mater. 18, 405 (2006).
http://dx.doi.org/10.1002/adma.200501726
4.
4. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, Polym. Adv. Technol. 16, 276 (2005).
http://dx.doi.org/10.1002/pat.568
5.
5. F. S. Kim, G. Ren, and S. A. Jenekhe, Chem. Mater. 23, 682 (2011).
http://dx.doi.org/10.1021/cm102772x
6.
6. A. Migliore, F. Vozzi, G. Vozzi, and A. Ahluwalia, Biomed. Microdevices 10, 81 (2008).
http://dx.doi.org/10.1007/s10544-007-9112-0
7.
7. X. Lu, W. Zhang, C. Wang, T.-C. Wen, and Y. Wei, Prog. Polym. Sci. 36, 671 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.010
8.
8. H. Bai, L. Zhao, C. Lu, C. Li, and G. Shi, Polymer 50, 3292 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.04.066
9.
9. J. Jang, B. Lim, J. Lee, and T. Hyeon, Chem. Commun. 1, 83 (2001).
http://dx.doi.org/10.1039/b006197m
10.
10. D. W. Hatchett and M. Josowicz, Chem. Rev. 108, 746 (2008).
http://dx.doi.org/10.1021/cr068112h
11.
11. J. Jang and J. H. Oh, Adv. Funct. Mater. 15, 494 (2005).
http://dx.doi.org/10.1002/adfm.200400095
12.
12. H. Yoon and J. Jang, Adv. Funct. Mater. 19, 1567 (2009);
http://dx.doi.org/10.1002/adfm.200801141
12.X. Lu, C. Wang, Y. Wei, Small 5, 2349 (2009).
http://dx.doi.org/10.1002/smll.200900445
13.
13. C.-H. Choi, H. Yi, S. Hwang, D. A. Weitz, and C.-S. Lee, Lab Chip 11, 1477 (2011).
http://dx.doi.org/10.1039/c0lc00711k
14.
14. G. Huang, V. A. B. Quinones, F. Ding, S. Kiavittaya, Y. Mei, and O. G. Schmidt, ACS Nano 4, 3123 (2010);
http://dx.doi.org/10.1021/nn100456r
14.M. T. Todaro, L. Blasi, C. Giordano, A. Rizzo, R. Cingolani, G. Gigli, A. Passaseo, and M. D. Vittorio, Nanotechnology 21, 245305 (2010).
http://dx.doi.org/10.1088/0957-4484/21/24/245305
15.
15. J. M. Schnur, Science 262, 1669 (1993).
http://dx.doi.org/10.1126/science.262.5140.1669
16.
16. X. Liu and J. Huang, New J. Chem. 36, 1729 (2012).
http://dx.doi.org/10.1039/c2nj40486a
17.
17. H. Fan, X. Yu, Y. Long, X. Zhang, H. Xiang, C. Duan, N. Zhao, X. Zhang, and J. Xu, Appl. Sur. Sci. 258, 2876 (2012).
http://dx.doi.org/10.1016/j.apsusc.2011.10.151
18.
18. D. Wu, F. Xu, B. Sun, R. Fu, H. He, and K. Matyjaszweski, Chem. Rev. 112, 3959 (2012).
http://dx.doi.org/10.1021/cr200440z
19.
19. S. Vempati and T. S. Natarajan, Materials Letters 65, 3493 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.07.047
20.
20. C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo, and J.-W. Lee, Small 3, 91 (2007);
http://dx.doi.org/10.1002/smll.200600243
20.S. Vempati and T. S. Natarajan, Materials Letters 65, 3493 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.07.047
21.
21. Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner, and J. H. Wendorff, Small 3, 1064 (2007).
http://dx.doi.org/10.1002/smll.200600536
22.
22. M. Steinhart, R. B. Wehrspohn, U. GÖsele, and J. H. Wendorff, Adgew. Chem. Int. Ed. 43, 1334 (2004).
http://dx.doi.org/10.1002/anie.200300614
23.
23. H. Dong and W. E. Jones, Jr., Langmuir 22, 11384 (2006).
http://dx.doi.org/10.1021/la061399t
24.
24. L. Jiang, T.-S. Chung, D. F. Li, C. Cao, and S. Kulprathipanja, J. Membr. Sci. 240, 91 (2004).
http://dx.doi.org/10.1016/j.memsci.2004.04.015
25.
25. B. Mills, J. A. Grant-Jacob, M. Feinaeugle, and R. W. Eason, Optical Express 21, 14853 (2013);
http://dx.doi.org/10.1364/OE.21.014853
25.E. Stankenvicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. J. Malinauskas, Micromech. Microeng. 22, 065022 (2012).
http://dx.doi.org/10.1088/0960-1317/22/6/065022
26.
26. P. Dayal and T. Kyu, J. Appl. Phys. 100, 043512 (2006).
http://dx.doi.org/10.1063/1.2259812
27.
27. J. T. Kim, S. K. Seol, J. Pyo, J. S. Lee, J. H. Je, and G. Margaritondo, Adv. Mater. 23, 1968 (2011).
http://dx.doi.org/10.1002/adma.201004528
28.
28. J. Hu and M.-F. Yu, Science 329, 313 (2010).
http://dx.doi.org/10.1126/science.1190496
29.
29. S. M. Berry, T. J. Roussel, S. D. Cambron, R. W. Cohn, and R. S. Keynton, Microfluid Nanofluid 13, 451 (2012).
http://dx.doi.org/10.1007/s10404-012-0973-z
30.
30. J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F. Sheperd, B. K. Ahn, and J. A. Lewis, Curr. Opin. Colloid Interface Sci. 16, 71 (2011).
http://dx.doi.org/10.1016/j.cocis.2010.11.002
31.
31. K. T. Rodolfa, A. Brukbauer, D. Zhou, Y. E. Korchev, and D. Klenerman, Angew. Chem. Int. Ed. 44, 6854 (2005).
http://dx.doi.org/10.1002/anie.200502338
32.
32. C. Laslau, D. E. Willians, B. Kannan, and J. Travas-Sejdic, Adv. Funct. Mater. 21, 4607 (2011).
http://dx.doi.org/10.1002/adfm.201101081
33.
33. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
http://dx.doi.org/10.1038/39827
34.
34. Y. O. Popov, Phys. Rev. E 71, 036313 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036313
35.
35. A. Askounis, K. Sefiane, V. Koutsos, and M. E. R. Shanahan, Colloids Surf. A: Physicochem. Eng. Aspects (in press 2012).
http://dx.doi.org/10.1016/j.colsurfa.2012.10.017
36.
36. R. Zheng, Eur. Phys. J. E 29, 205 (2009).
http://dx.doi.org/10.1140/epje/i2009-10469-7
37.
37. M. S. Kim, S. Lee, J. H. Koo, J. Hong, Y. Chung, K. J. Son, W.-G. Koh, and T. Lee, ACS Appl. Mater. Interfaces 4, 5162 (2012).
http://dx.doi.org/10.1021/am301798r
38.
38. C. Chatzikomis, S. W. Pattinson, K. K. K. Koziol, and I. M. Hutchings, J. Mater. Sci. 47, 5760 (2012).
http://dx.doi.org/10.1007/s10853-012-6467-2
39.
39. C. P. Melo, B. B. Neto, E. G. de Lima, L. F. B. de Lira, and J. E. G. de Souza, Sens. Actuators B 109, 348 (2005).
http://dx.doi.org/10.1016/j.snb.2005.01.001
40.
40. G. Han and G. Shi, Thin Solid Films 515, 6986 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.02.007
41.
41. L. Ruangchuay and A. Sirivat, J. Schwank, Talanta 60, 25 (2003).
http://dx.doi.org/10.1016/S0039-9140(03)00061-4
42.
42. L.-X. Wang, X.-G. Li, and Y.-L. Yang, React. Funct. Polym. 47, 125 (2001).
http://dx.doi.org/10.1016/S1381-5148(00)00079-1
43.
43. D. Atias, K. Abu-Rabeah, S. Herrmann, J. Frenkel, D. Tavor, S. Cosnier, and R. S. Marks, Biosens. Bioelectron. 24, 3683 (2009).
http://dx.doi.org/10.1016/j.bios.2009.04.035
44.
44. A. Pyun, J. R. Bell, K. H. Won, B. M. Weon, S. K. Seol, J. H. Je, and C. W. Macosko, Macromolecules 40, 2029 (2007).
http://dx.doi.org/10.1021/ma062635+
45.
45. J. Kim, Y. H. Choi, S. Chang, K.-T. Kim, and J. H. Je, Sci. Rep. 2, 468 (2012).
46.
46. O. S. Kwon, J.-Y. Hong, S. J. Park, Y. Jang, and J. Jang, J. Phys. Chem. C 114, 18874 (2010).
http://dx.doi.org/10.1021/jp1083086
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4823482
Loading
/content/aip/journal/adva/3/9/10.1063/1.4823482
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4823482
2013-09-20
2016-09-29

Abstract

Single freestanding microtubes of poly(methyl methacrylate)/polypyrrole (PMMA/PPy) are produced based on a meniscus-guided approach. A ring-deposit of nanoparticles is first formed in a meniscus solution of PMMA/PPy nanoparticles by outward liquid flow in fast solvent evaporation. Continuous accumulation of nanoparticles on the ring-deposit is then made by guiding the meniscus upward under the outward flow, thereby forming single composite microtube with controlled outer diameter and wall thickness. The meniscus-guiding enables us to produce an array of freestanding microtubes that are individually controlled in size at the desired positions. We demonstrate individually addressable gas sensors by integrating PMMA/PPy microtubes on electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4823482.html;jsessionid=TgR8kcqU42zupGmKJYxwUIO_.x-aip-live-03?itemId=/content/aip/journal/adva/3/9/10.1063/1.4823482&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4823482&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4823482'
Right1,Right2,Right3,