Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4823484
1.
1. M. Laroussi, M. Kong, G. Morfill, and W. Stolz, Plasma Medicine (Cambridge, New York, 2012).
2.
2. X. P. Lu, Z. Jiang, Q. Xiong, Z. Tang, X. Hu, and Y. Pan, Appl. Phys. Lett. 92, 081502 (2008).
http://dx.doi.org/10.1063/1.2883945
3.
3. E. Stoffels, I. E. Kieft, R. E. J. Sladek, L. J. M. van den Bedem, E. P. van der Laan, and M. Steinbuch, Plasma Sources Sci. Technol. 15, S169 (2006).
http://dx.doi.org/10.1088/0963-0252/15/4/S03
4.
4. G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, Plasma Chem. Plasma Process 27, 163 (2007).
http://dx.doi.org/10.1007/s11090-007-9048-4
5.
5. J. Huang, H. Li, W. Chen, G.-H. Lv, X.-Q. Wang, G.-P. Zhang, K. Ostrikov, P.-Y. Wang, and S.-Z. Yang, Appl. Phys. Lett. 99, 253701 (2011).
http://dx.doi.org/10.1063/1.3666819
6.
6. X. Yan, Z. Xiong, F. Zou, S. Zhao, X. Lu, G. Yang, G. He, and K. Ostrikov, Plasma Process. Polym. 9, 59 (2012).
http://dx.doi.org/10.1002/ppap.201100031
7.
7. S. Kalghtgi, C. Kelly, E. Cerchar, and J. Azizkhan-Clifford, Plasma Medicine 1, 249 (2011).
http://dx.doi.org/10.1615/PlasmaMed.2012004184
8.
8. S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, Appl. Phys. Lett. 97, 023702 (2010).
http://dx.doi.org/10.1063/1.3462293
9.
9. G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, Appl. Phys. Lett. 96, 021502 (2010).
http://dx.doi.org/10.1063/1.3292206
10.
10. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, PLoS One 6, e16270 (2011).
http://dx.doi.org/10.1371/journal.pone.0016270
11.
11. J. Y. Kim, Y. Wei, J. Li, P. Foy, T. Hawkins, J. Ballato, and S.-O. Kim, Small 7, 2291 (2011).
http://dx.doi.org/10.1002/smll.201100456
12.
12. I. E. Kieft, E. P. v. d. Laan, and E. Stoffels, New J. Phys. 6, 149 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/149
13.
13. D. B. Kim, J. K. Rhee, B. Gweon, S. Y. Moon, and W. Choe, Appl. Phys. Lett. 91, 151502 (2007).
http://dx.doi.org/10.1063/1.2794774
14.
14. H. S. Park, S. J. Kim, H. M. Joh, T. H. Chung, S. H. Bae, and S. H. Leem, Phys. Plasmas 17, 033502 (2010).
http://dx.doi.org/10.1063/1.3330507
15.
15. G. Li, H.-P. Li, L.-Y. Wang, S. Wang, H.-X. Zhao, W.-T. Sun, X.-H. Xing, and C.-Y. Bao, Appl. Phys. Lett. 92, 221504 (2008).
http://dx.doi.org/10.1063/1.2938692
16.
16. X. Duan, F. He, and J. Ouyang, Appl. Phys. Lett. 96, 231502 (2010).
http://dx.doi.org/10.1063/1.3453451
17.
17. M. Laroussi and T. Akan, Plasma Proc. Polym. 4, 777 (2007).
http://dx.doi.org/10.1002/ppap.200700066
18.
18. A. Shashurin, M. Keidar, S. Bronnikov, R. A. Jurjus, and M. A. Stepp, Appl. Phys. Lett. 93, 181501 (2008).
http://dx.doi.org/10.1063/1.3020223
19.
19. A. V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, and G. Popa, J. Phys. D: Appl. Phys. 44, 105204 (2011).
http://dx.doi.org/10.1088/0022-3727/44/10/105204
20.
20. R. Ma, H. Feng, F. Li, Y. Liang, Q. Zhang, W. Zhu, J. Zhang, K. H. Becker, and J. Fang, Appl. Phys. Lett. 100, 123701 (2012).
http://dx.doi.org/10.1063/1.3693165
21.
21. B. Gweon, D. B. Kim, D. Kim, H. Kim, H. Jung, J. H. Shin, and W. Choe, Appl. Phys. Lett. 99, 063701 (2011).
http://dx.doi.org/10.1063/1.3622631
22.
22. T. M. Johnson, Z. X. Yu, V. J. Ferrans, R. A. Lowenstein, and T. Rinkel, Proc. Natl. Acad. Sci. 93, 11848 (1996).
http://dx.doi.org/10.1073/pnas.93.21.11848
23.
23. J. L. Walsh and M. G. Kong, Appl. Phys. Lett. 93, 111501 (2008).
http://dx.doi.org/10.1063/1.2982497
24.
24. G. Chen, S. Chen, M. Zhou, W. Feng, W. Gu, and S. Yang, Plasma Sources Sci. Technol. 15, 603 (2006).
http://dx.doi.org/10.1088/0963-0252/15/4/002
25.
25. X. Li, N. Yuan, P. Jia, and J. Chen, Phys. Plasmas 17, 093504 (2010).
http://dx.doi.org/10.1063/1.3476899
26.
26. J. L. Walsh, F. Iza, N. B. Janson, V. J. Law, and M. G. Kong, J. Phys. D: Appl. Phys. 43, 075201 (2010).
http://dx.doi.org/10.1088/0022-3727/43/7/075201
27.
27. Q. Xiong, A. Y. Nikiforov, X. P. Lu, and C. Leys, J. Phys. D: Appl. Phys. 43, 415201 (2010).
http://dx.doi.org/10.1088/0022-3727/43/41/415201
28.
28. Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, and Y. Pan, J. Appl. Phys. 107, 063308 (2010).
http://dx.doi.org/10.1063/1.3360932
29.
29. X. P. Lu, Z. Jiang, Q. Xiong, Z. Tang, and Y. Pan, Appl. Phys. Lett. 92, 151504 (2008).
http://dx.doi.org/10.1063/1.2912524
30.
30. M. H. Guerra-Mutis, Carlos V Pelaez U, and Rafael Cabanzo H., Plasma Sources Sci. Technol. 12, 165 (2003).
http://dx.doi.org/10.1088/0963-0252/12/2/307
31.
31. J. L. Walsh, J. J. Shi, and M. G. Kong, Appl. Phys. Lett. 88, 171501 (2006).
http://dx.doi.org/10.1063/1.2198100
32.
32. M. Laroussi and X. Lu, Appl. Phys. Lett. 87, 113902 (2005).
http://dx.doi.org/10.1063/1.2045549
33.
33. J. F. Kolb, A. A. H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, M. Stacey, and K. H. Schoenbach, Appl. Phys. Lett. 92, 241501 (2008).
http://dx.doi.org/10.1063/1.2940325
34.
34. J. Goree, B. Liu, D. Drake, and E. Stoffels, IEEE Trans. Plasma Sci. 34, 1317 (2006).
http://dx.doi.org/10.1109/TPS.2006.878431
35.
35. Q. Li, X. M. Zhu, J. T. Li, and Y. K. Pu, J. Appl. Phys. 107, 043304 (2010).
http://dx.doi.org/10.1063/1.3295914
36.
36. M. Qian, C. Ren, D. Wang, J. Zhang, and G. Wei, J. Appl. Phys. 107, 063303 (2010).
http://dx.doi.org/10.1063/1.3330717
37.
37. D. L. Crintea, U. Czarnetzki, S. Iordanova, I. Koleva, and D. Luggenhölscher, J. Phys. D: Appl. Phys. 42, 045208 (2009).
http://dx.doi.org/10.1088/0022-3727/42/4/045208
38.
38. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, Plasma Sources Sci. Technol. 17, 025013 (2008).
http://dx.doi.org/10.1088/0963-0252/17/2/025013
39.
39. X. Lu, Q. Xiong, Z. Xiong, J. Hu, F. Zhou, W. Gong, Y. Xian, C. Zou, Z. Tang, Z. Jiang, and Y. Pan, J. Appl. Phys. 105, 043304 (2009).
http://dx.doi.org/10.1063/1.3079503
40.
40. J. Shi, F. Zhong, J. Zhang, D. W. Liu, and M. G. Kong, Phys. Plasmas 15, 013504 (2008).
http://dx.doi.org/10.1063/1.2828551
41.
41. Q. Xiong, X. Lu, J. Liu, Y. Xian, Z. Xiong, F. Zou, C. Zou, W. Gong, J. Hu, K. Chen, X. Pei, Z. Jiang, and Y. Pan, J. Appl. Phys. 106, 083302 (2009).
http://dx.doi.org/10.1063/1.3239512
42.
42. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).
43.
43. Q. Xiong, X. P. Lu, K. Ostrikov, Y. Xian, C. Zou, Z. Xiong, and Y. Pan, Phys. Plasmas 17, 043506 (2010).
http://dx.doi.org/10.1063/1.3381132
44.
44. H. Pelicano, D. Carney and P. Huang, Drug Resist. Updates. 7, 97 (2004)
http://dx.doi.org/10.1016/j.drup.2004.01.004
45.
45. T. Ozben, J. Pharm. Sci. 96, 2181 (2007).
http://dx.doi.org/10.1002/jps.20874
46.
46. H. M. Joh, S. J. Kim, T. H. Chung, and S. H. Leem, Appl. Phys. Lett. 101, 053703 (2012).
http://dx.doi.org/10.1063/1.4742742
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4823484
Loading
/content/aip/journal/adva/3/9/10.1063/1.4823484
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4823484
2013-09-20
2016-09-30

Abstract

Atmospheric pressure plasma jets employing nitrogen, helium, or argon gases driven by low-frequency (several tens of kilohertz) ac voltage and pulsed dc voltage were fabricated and characterized. The changes in discharge current, optical emission intensities from reactive radicals, gas temperature, and plume length of plasma jets with the control parameters were measured and compared. The control parameters include applied voltage, working gas, and gas flow rate. As an application to plasma-cancer cell interactions, the effects of atmospheric pressure plasma jet on the morphology and intracellular reactive oxygen species (ROS) level of human lung adenocarcinoma cell (A549) and human bladder cancer cell (EJ) were explored. The experimental results show that the plasma can effectively control the intracellular concentrations of ROS. Although there exist slight differences in the production of ROS, helium, argon, or nitrogen plasma jets are found to be useful in enhancing the intracellular ROS concentrations in cancer cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4823484.html;jsessionid=AXsx5Ylq5LVKVC6yAQm58XfQ.x-aip-live-02?itemId=/content/aip/journal/adva/3/9/10.1063/1.4823484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4823484&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4823484'
Right1,Right2,Right3,