Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Garcia, J. de la Venta, P. Crespo, J. Lopis, S. Penadés, A. Fernández, and A. Hernando, Phys. Rev. B 72, 241403R (2005).
2. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
3. J. M. Wessels, H.-G. Nothofer, W. E. Ford, F. v. Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, and Akio Yasuda, J. Am. Chem. Soc. 126, 3349 (2004).
4. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, Science 273, 1690 (1996).
5. P. Crespo, R. Litrań, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sańchez-López, M. A. Garcia, A. Hernando, S. Penadeś, and A. Fernańdez, Phys. Rev. Lett. 93, 087204 (2004).
6. Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
7. M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. Hugh Stitt, P. Johnston, K. Griffin, and C. J. Kiely, Nature (London) 437, 1132 (2005).
8. M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert, Nature (London) 454, 981 (2008).
9. Z. Tang, N. A. Kotov, and M. Giersig, Science 297, 237 (2002).
10. R. B. Grubbs, Nat. Mater. 6, 553 (2007).
11. Q. Ji, S. Acharya, J. P. Hill, G. J. Richards, and K. Ariga, Adv. Mater. 20, 4027 (2008).
12. Z. L. Wang, S. A. Harfenist, R. L. Whetten, J. Bentley, and N. D. Evans, J. Phys. Chem. B 102, 3068 (1998).
13. S. Pal, N. S. John, P. J. Thomas, G. U. Kulkarni, and M. K. Sanyal, J. Phys. Chem. B 108, 10770 (2004).
14. D. G. Schultz, X.-M. Lin, D. Li, J. Gebhardt, M. Meron, P. J. Viccaro, and B. Lin, J. Phys. Chem. B 110, 24522 (2006).
15. R. K. Gupta, K. A. Suresh, and S. Kumar, Phys. Rev. E 78, 032601 (2008).
16. R. Banerjee, S. Hazra, S. Banerjee, and M. K. Sanyal, Phys. Rev. E 80, 056204 (2009).
17. M. K. Bera, M. K. Sanyal, S. Pal, J. Daillant, A. Datta, G. U. Kulkarni, D. Luzet, and O. Konovalov, Europhys. Lett. 78, 56003 (2007).
18. M. Fukuto, R. K. Heilmann, P. S. Pershan, A. Badia, and R. B. Lennox, J. Chem. Phys. 120, 3446 (2004).
19. B. D. Leahy, L. Pocivavsek, M. Meron, K. L. Lam, D. Salas, P. J. Viccaro, and K. Y. C. Lee, B. Lin, Phys. Rev. Lett. 105, 058301 (2010).
20. S. Kundu, Langmuir 27, 3930 (2011).
21. F. C. Meldrum, N. A. Kotov, and J. H. Fendler, Langmuir 10, 2035 (1994).
22. J. R. Heath, C. M. Knobler, and D. V. Leff, J. Phys. Chem. B 101, 189 (1997).
23. R. Banerjee, M. K. Sanyal, M. K. Bera, A. Singh, J. Novak, and O. Konovalov, Phys. Rev. E 83, 051605 (2011).
24. J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, Science 263, 1726 (1994).
25. J. K. Bal, and S. Hazra, Phys. Rev. B 79, 155412 (2009).
26. J. K. Bal, S. Kundu, and S. Hazra, Phys. Rev. B 81, 045404 (2010).
27. G. Evmenenko, B. Stripe, and P. Dutta, J. Colloid Interface Sc. 360, 793 (2011).
28. S. Kundu, and J. K. Bal, J. Appl. Phys. 110, 114302 (2011).
29. S. Kundu, J. Appl. Phys. 112, 014323 (2012).
30. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994).
31. L. G. Parratt, Phys. Rev. 95, 359 (1954).
32. J. Daillant, A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 1999).
33. J. K. Basu, and M. K. Sanyal, Phys. Rep. 363, 1 (2002).
34. A. T. Heitsch, R. N. Patel, B. W. Goodfellow, D.-M. Smilgies, and B. A. Korgel, J. Phys. Chem. C 114, 14427 (2010).
35. K. Vegso, P. Siffalovic, E. Majkova, M. Jergel, M. Benkovicova, T. Kocsis, M. Weis, S. Luby, K. Nygård, and O. Konovalov, Langmuir 28, 10409 (2012).

Data & Media loading...


Article metrics loading...



Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001) substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd