Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/9/10.1063/1.4824010
1.
1. M. A. Garcia, J. de la Venta, P. Crespo, J. Lopis, S. Penadés, A. Fernández, and A. Hernando, Phys. Rev. B 72, 241403R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.241403
2.
2. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
http://dx.doi.org/10.1016/S0030-4018(03)01357-9
3.
3. J. M. Wessels, H.-G. Nothofer, W. E. Ford, F. v. Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, and Akio Yasuda, J. Am. Chem. Soc. 126, 3349 (2004).
http://dx.doi.org/10.1021/ja0377605
4.
4. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, Science 273, 1690 (1996).
http://dx.doi.org/10.1126/science.273.5282.1690
5.
5. P. Crespo, R. Litrań, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sańchez-López, M. A. Garcia, A. Hernando, S. Penadeś, and A. Fernańdez, Phys. Rev. Lett. 93, 087204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.087204
6.
6. Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.116801
7.
7. M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. Hugh Stitt, P. Johnston, K. Griffin, and C. J. Kiely, Nature (London) 437, 1132 (2005).
http://dx.doi.org/10.1038/nature04190
8.
8. M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert, Nature (London) 454, 981 (2008).
http://dx.doi.org/10.1038/nature07194
9.
9. Z. Tang, N. A. Kotov, and M. Giersig, Science 297, 237 (2002).
http://dx.doi.org/10.1126/science.1072086
10.
10. R. B. Grubbs, Nat. Mater. 6, 553 (2007).
http://dx.doi.org/10.1038/nmat1964
11.
11. Q. Ji, S. Acharya, J. P. Hill, G. J. Richards, and K. Ariga, Adv. Mater. 20, 4027 (2008).
http://dx.doi.org/10.1002/adma.200801064
12.
12. Z. L. Wang, S. A. Harfenist, R. L. Whetten, J. Bentley, and N. D. Evans, J. Phys. Chem. B 102, 3068 (1998).
http://dx.doi.org/10.1021/jp980864v
13.
13. S. Pal, N. S. John, P. J. Thomas, G. U. Kulkarni, and M. K. Sanyal, J. Phys. Chem. B 108, 10770 (2004).
http://dx.doi.org/10.1021/jp037009i
14.
14. D. G. Schultz, X.-M. Lin, D. Li, J. Gebhardt, M. Meron, P. J. Viccaro, and B. Lin, J. Phys. Chem. B 110, 24522 (2006).
http://dx.doi.org/10.1021/jp063820s
15.
15. R. K. Gupta, K. A. Suresh, and S. Kumar, Phys. Rev. E 78, 032601 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.032601
16.
16. R. Banerjee, S. Hazra, S. Banerjee, and M. K. Sanyal, Phys. Rev. E 80, 056204 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.056204
17.
17. M. K. Bera, M. K. Sanyal, S. Pal, J. Daillant, A. Datta, G. U. Kulkarni, D. Luzet, and O. Konovalov, Europhys. Lett. 78, 56003 (2007).
http://dx.doi.org/10.1209/0295-5075/78/56003
18.
18. M. Fukuto, R. K. Heilmann, P. S. Pershan, A. Badia, and R. B. Lennox, J. Chem. Phys. 120, 3446 (2004).
http://dx.doi.org/10.1063/1.1640334
19.
19. B. D. Leahy, L. Pocivavsek, M. Meron, K. L. Lam, D. Salas, P. J. Viccaro, and K. Y. C. Lee, B. Lin, Phys. Rev. Lett. 105, 058301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.058301
20.
20. S. Kundu, Langmuir 27, 3930 (2011).
http://dx.doi.org/10.1021/la104306m
21.
21. F. C. Meldrum, N. A. Kotov, and J. H. Fendler, Langmuir 10, 2035 (1994).
http://dx.doi.org/10.1021/la00019a001
22.
22. J. R. Heath, C. M. Knobler, and D. V. Leff, J. Phys. Chem. B 101, 189 (1997).
http://dx.doi.org/10.1021/jp9611582
23.
23. R. Banerjee, M. K. Sanyal, M. K. Bera, A. Singh, J. Novak, and O. Konovalov, Phys. Rev. E 83, 051605 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051605
24.
24. J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, Science 263, 1726 (1994).
http://dx.doi.org/10.1126/science.8134836
25.
25. J. K. Bal, and S. Hazra, Phys. Rev. B 79, 155412 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155412
26.
26. J. K. Bal, S. Kundu, and S. Hazra, Phys. Rev. B 81, 045404 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045404
27.
27. G. Evmenenko, B. Stripe, and P. Dutta, J. Colloid Interface Sc. 360, 793 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.04.073
28.
28. S. Kundu, and J. K. Bal, J. Appl. Phys. 110, 114302 (2011).
http://dx.doi.org/10.1063/1.3664696
29.
29. S. Kundu, J. Appl. Phys. 112, 014323 (2012).
http://dx.doi.org/10.1063/1.4736546
30.
30. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994).
http://dx.doi.org/10.1039/c39940000801
31.
31. L. G. Parratt, Phys. Rev. 95, 359 (1954).
http://dx.doi.org/10.1103/PhysRev.95.359
32.
32. J. Daillant, A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 1999).
33.
33. J. K. Basu, and M. K. Sanyal, Phys. Rep. 363, 1 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00083-7
34.
34. A. T. Heitsch, R. N. Patel, B. W. Goodfellow, D.-M. Smilgies, and B. A. Korgel, J. Phys. Chem. C 114, 14427 (2010).
http://dx.doi.org/10.1021/jp1047979
35.
35. K. Vegso, P. Siffalovic, E. Majkova, M. Jergel, M. Benkovicova, T. Kocsis, M. Weis, S. Luby, K. Nygård, and O. Konovalov, Langmuir 28, 10409 (2012).
http://dx.doi.org/10.1021/la301764t
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/9/10.1063/1.4824010
Loading
/content/aip/journal/adva/3/9/10.1063/1.4824010
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/9/10.1063/1.4824010
2013-09-25
2016-09-27

Abstract

Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001) substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/9/1.4824010.html;jsessionid=QFrn8r5HDi4q8EUlML0oWCpE.x-aip-live-06?itemId=/content/aip/journal/adva/3/9/10.1063/1.4824010&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/9/10.1063/1.4824010&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/9/10.1063/1.4824010'
Right1,Right2,Right3,