Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
2. J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang, and G. Bao, J. Appl. Phys. 102, 084303 (2007).
3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
4. P. X. Gao, J. Song, J. Liu, and Z. L. Wang, Adv. Mater. 19, 67 (2007).
5. Z. L. Wang, Mater. Sci. Eng. R 64, 33 (2009).
6. J. B. Baxter and E. S. Aydila, App. Phys. Lett. 86, 053114 (2005).
7. G. Zhu, R. Yang, S. Wang, and Z. L. Wang, Nano Lett. 10, 3151 (2010).
8. K. Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J. I. Sohn, S. N. Cha, D. Choi, Z. L. Wang, and S.-W. Kim, Nano Lett. 12, 1959 (2012).
9. N. Liu, G. Fang, W. Zeng, H. Long, L. Yuan, and X. Zhao, Appl. Phys. Lett. 95, 153505 (2009).
10. W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002).
11. J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81, 1312 (2002).
12. E. C. Greyson, Y. Babayan, and T. W. Odom, Adv. Mater. 16, 1348 (2004).
13. B. Weintraub, S. Chang, S. Singgamaneni, W. H. Lee, Y. J. Choi, J. H. Bae, M. Kirkham, V. V. Tsukruk, and Y. Deng, Nanotechnology 19, 435302 (2008).
14. C. Xu, P. Shin, L. Cao, and D. Gao, J. Phys. Chem. C 114, 125 (2010).
15. J. Y. Kim, J. W. Cho, and S. H. Kim, Mater. Lett. 65, 1161 (2011).
16. C. Liu, N. Cui, N. M. Brown, and B. J. Meenan, Surf. Coat. Technol. 185, 311 (2004).
17. J. W. Cho, C. S. Lee, K. I. Lee, S. M. Kim, S. H. Kim, and Y. K. Kim, Appl. Phys. Lett. 101, 083905 (2012).
18. M. Ohring, Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, 2nd ed., Chap. 7., 2002)
19. X. Wang, J. Song, C. J. Summers, J. H. Ryou, P. Li, R. D. Dupuis, and Z. L. Wang, J. Phys. Chem. B. 110, 7720 (2006).
20. J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pusche, P. Geithner, and L. Ley, J. Appl. Phys. 97, 044315 (2005).
21. F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette, and R. J. Lad, Thin Solid Films 468, 57 (2004).
22. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

Data & Media loading...


Article metrics loading...



We propose a facile method to control the growth and areal density of zinc-oxide (ZnO) nanowire arrays using gold or silver films deposited on aluminum-doped ZnO (AZO) layers coated on glass substrates. Nanowires exceeding 5 μm in length grew on both the glass/AZO-layer and on the glass/AZO-layer/Au-film where the areal array density was controlled primarily by changing the annealing temperature. In contrast, the nanowire arrays grew only on the AZO surface but not on the Ag film owing to the formation of an Ag-oxide layer. We fabricated field emitter devices with density controlled ZnO nanowire arrays and low turn-on electric field of ∼6 V/μm and a field enhancement factor of up to 1188 were obtained with density controlled ZnO nanowire arrays.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd