Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Laref, E. Şaşıoğlu, and I. Galanakis, Physics Letters A 23, 296001 (2011).
2. K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, Journal of Physics: Condensed Matter 16, 5639 (2004).
3. G. Y. Gao, K. L. Yao, E. Şaşıoğlu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Physical Review B 75, 174442 (2007).
4. G. Gao, K. Yao, Z. Liu, J. Zhang, Y. Min, and S. Fan, Physics Letters A 372, 1512 (2008).
5. D. Young, D. Hall, M. E. Torelli, Z. Fisk, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich, and R. Zysler, Nature (London) 397, 412 (1999).
6. L. S. Domeles, M. Venkatasan, M. Moliner, L. Lunney, and J. M. D. Coye, Applied Physics Letters 85, 6377 (2004).
7. M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Physical Review B 73, 024404 (2006).
8. O. Volnianska and P. Boguslawski, Journal of Physics: Condensed Matter 22, 073202 (2010).
9. X. Liu et al., Surface Science 60, 1844 (2008).
10. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo et al., Journal of Physics: Condensed Matter 21, 395502 (19pp) (2009).
11. J. P. Perdew, S. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
12. Z. Nourbakhsh, S. J. Hashemifar, and H. Akbarzadeh, Journal of Magnetism and Magnetic Materials 341, 56 (2013).
13. F. Murnaghan, Proceedings of the National Academy of Sciences of the United States of America 30, 244 (1944).
14. G. Henkelman and H. Jónsson, The Journal of Chemical Physics 113, 9978 (2000).
15. D. Sheppard, R. Terrell, and G. Henkelman, The Journal of Chemical Physics 128, 134106 (2008).
16. H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulation, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific Publishing Company, 1998).
17. G. Henkelman, G. Jóhannesson, and H. Jónsson, Theoretical Methods in Condensed Phase Chemistry 120, 269 (2002).

Data & Media loading...


Article metrics loading...



Density functional - pseudopotential calculations are performed to provide first-principles insights into magnetic behaviour of bulk CaN and CaN monolayers on Cu(001) in the rock-salt (RS) and zinc-blende (ZB) structures. Our results indicate that both RS- and ZB-CaN exhibit half-metallic ferromagnetism originated from the incomplete 2p shell of the nitrogen ion. In contrast to the bulk CaN, the CaN monolayers on Cu(001) generally favor ZB structure. We argue that the more stable ZB-CaN thin films on Cu(001) are nonmagnetic, because of strong Cu-N bonding at the interface, while the less stable Ca terminated ZB-CaN thin films exhibit half-metallic ferromagnetism. The transition path between the high energy ferromagnetic and the stable nonmagnetic configurations of the ZB-CaN monolayer on Cu(001) are studied by using the nudged elastic band method. We observe a two stages transition and an activation barrier of about 1.18 eV in the minimum energy path of this transition.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd