1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Density functional study of CaN mono and bilayer on Cu(001)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4861210
1.
1. A. Laref, E. Şaşıoğlu, and I. Galanakis, Physics Letters A 23, 296001 (2011).
2.
2. K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, Journal of Physics: Condensed Matter 16, 5639 (2004).
http://dx.doi.org/10.1088/0953-8984/16/48/021
3.
3. G. Y. Gao, K. L. Yao, E. Şaşıoğlu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Physical Review B 75, 174442 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174442
4.
4. G. Gao, K. Yao, Z. Liu, J. Zhang, Y. Min, and S. Fan, Physics Letters A 372, 1512 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.09.064
5.
5. D. Young, D. Hall, M. E. Torelli, Z. Fisk, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich, and R. Zysler, Nature (London) 397, 412 (1999).
http://dx.doi.org/10.1038/17081
6.
6. L. S. Domeles, M. Venkatasan, M. Moliner, L. Lunney, and J. M. D. Coye, Applied Physics Letters 85, 6377 (2004).
http://dx.doi.org/10.1063/1.1840113
7.
7. M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Physical Review B 73, 024404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024404
8.
8. O. Volnianska and P. Boguslawski, Journal of Physics: Condensed Matter 22, 073202 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/073202
9.
9. X. Liu et al., Surface Science 60, 1844 (2008).
http://dx.doi.org/10.1016/j.susc.2008.03.043
10.
10. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo et al., Journal of Physics: Condensed Matter 21, 395502 (19pp) (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
11.
11. J. P. Perdew, S. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
12.
12. Z. Nourbakhsh, S. J. Hashemifar, and H. Akbarzadeh, Journal of Magnetism and Magnetic Materials 341, 56 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.03.029
13.
13. F. Murnaghan, Proceedings of the National Academy of Sciences of the United States of America 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
14.
14. G. Henkelman and H. Jónsson, The Journal of Chemical Physics 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
15.
15. D. Sheppard, R. Terrell, and G. Henkelman, The Journal of Chemical Physics 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
16.
16. H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulation, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific Publishing Company, 1998).
17.
17. G. Henkelman, G. Jóhannesson, and H. Jónsson, Theoretical Methods in Condensed Phase Chemistry 120, 269 (2002).
http://dx.doi.org/10.1007/0-306-46949-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861210
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Calculated total energy of CaN primitive cell in terms of cell volume in the ZB and RS structures.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic top view of the Cu(001) surface (black lines and circles). The red shaded areas are two possible patterns to match CaN unit cell on Cu(001) surface unit cell. The smaller area corresponds to the CaN(1 × 1):Cu(1 × 1) pattern while the larger area shows the CaN(1 × 1):Cu( ) pattern. The letters b and h show bridge and hollow sites of the Cu surface.

Image of FIG. 3.

Click to view

FIG. 3.

Computed electron-density contour plots of the Ca-h and N-h terminated ZB-CaN monolayers on Cu(001), along with the corresponding plots for the transition states and local minimum of this system in the obtained minimum energy path between the Ca-h and N-h terminated monolayers. The red (dark) shading shows electron density.

Image of FIG. 4.

Click to view

FIG. 4.

Calculated atomic DOS of the Ca-h (left) and N-h (right) terminated ZB-CaN bilayer on Cu(001). The order of plots from top to down is consistent with the order of atomic layers from surface toward interface. The positive and negative DOS correspond to the majority and minority states. The Fermi energies are set to zero.

Image of FIG. 5.

Click to view

FIG. 5.

Obtained minimum energy path between the ferromagnetic Ca-h termination and the nonmagnetic N-h termination of the ZB-CaN monolayer on Cu(001). The dashed line shows the initial path obtained by the normal NEB calculations while the final path is optimized by applying climbing image NEB technique. 16 The saddle points of the path which correspond to the highest energy intermediate transition states are highlighted.

Tables

Generic image for table

Click to view

Table I.

Calculated properties of bulk CaN in the ZB and RS structures and bulk Cu in the FCC structure, (bohr): lattice constants, (GPa): bulk modulus, Δ (Ry/): heat of formation, M (μ/): total magnetization.

Generic image for table

Click to view

Table II.

Calculated formation energy (Ry/) and total magnetization M (μ/) of all considered terminations of CaN mono and bilayer on Cu(001). Here stands for CaN unit.

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4861210
2014-01-02
2014-04-19

Abstract

Density functional - pseudopotential calculations are performed to provide first-principles insights into magnetic behaviour of bulk CaN and CaN monolayers on Cu(001) in the rock-salt (RS) and zinc-blende (ZB) structures. Our results indicate that both RS- and ZB-CaN exhibit half-metallic ferromagnetism originated from the incomplete 2p shell of the nitrogen ion. In contrast to the bulk CaN, the CaN monolayers on Cu(001) generally favor ZB structure. We argue that the more stable ZB-CaN thin films on Cu(001) are nonmagnetic, because of strong Cu-N bonding at the interface, while the less stable Ca terminated ZB-CaN thin films exhibit half-metallic ferromagnetism. The transition path between the high energy ferromagnetic and the stable nonmagnetic configurations of the ZB-CaN monolayer on Cu(001) are studied by using the nudged elastic band method. We observe a two stages transition and an activation barrier of about 1.18 eV in the minimum energy path of this transition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4861210.html;jsessionid=pck9v22opqvt.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4861210&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density functional study of CaN mono and bilayer on Cu(001)
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861210
10.1063/1.4861210
SEARCH_EXPAND_ITEM