1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Optical conductivity of Ni1 − x Pt x alloys (0<x<0.25) from 0.76 to 6.6 eV
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4861214
1.
1. E. D. Palik, Handbook of Optical Constants of Solids, Vols. 1-3 (Academic, San Diego, 1998).
2.
2. R. C. Vehse and E. T. Arakawa, Phys. Rev. 180, 695 (1969).
http://dx.doi.org/10.1103/PhysRev.180.695
3.
3. T. A. Gavrilova, V. V. Atuchin, V. N. Kruchinin, and D. V. Lychagin, Physics Procedia 23, 61 (2012).
http://dx.doi.org/10.1016/j.phpro.2012.01.016
4.
4. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, San Diego, 1998), p. 275.
5.
5. L. S. Abdallah, S. Zollner, C. Lavoie, A. Ozcan, and M. Raymond, Thin Solid Film (in print). Ignoring the surface effects does not change the optical constants much, but significantly increases the Drude dampening, which reduces the strength of the interband transitions and also affects their energy parameters.
6.
6. D. W. Lynch, R. Rosei, and J. H. Weaver, Solid State Commun. 9, 2195 (1971).
http://dx.doi.org/10.1016/0038-1098(71)90629-6
7.
7. P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.5056
8.
8. M. Stoll, Solid State Commun. 8, 1207 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90361-3
9.
9. M. Stoll, J. Appl. Phys. 42, 1717 (1971).
http://dx.doi.org/10.1063/1.1660407
10.
10. V. W. Kamineni, M. Raymond, E. J. Bersch, B. B. Doris, and A. C. Diebold, J. Appl. Phys. 107, 093525 (2010).
http://dx.doi.org/10.1063/1.3380665
11.
11. M. Losurdo, (unpublished).
12.
12. J. N. Hilfiker et al., Thin Solid Films 516, 7979 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.04.060
13.
13. S. Zollner, R. B. Gregory, M. L. Kottke, V. Vartanian, X.-D. Wang, D. Theodore, P. L. Fejes, J. R. Conner, M. Raymond, X. Zhu, D. Denning, S. Bolton, K. Chang, R. Noble, M. Jahanbani, M. Rossow, D. Goedeke, S. Filipiak, R. Garcia, D. Jawarani, B. Taylor, B.-Y. Nguyen, P. E. Crabtree, and A. Thean, “Metrology Of Silicide Contacts For Future CMOS,” in 2007 International Conference on Frontiers of Characterization and Metrology, edited by D. G. Seiler, A. C. Diebold, R. McDonald, C. M. Garner, D. Herr, R. P. Khosla, and E. M. Secula, AIP Conf. Proc. 931, 337346 (2007).
http://dx.doi.org/10.1063/1.2799394
14.
14. H. Fujiwara, Spectroscopic Ellipsometry (Wiley, Chichester, UK, 2007).
15.
15. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
16.
16. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).
17.
17.J. A. Woollam Co., Inc., Lincoln, NE. Model V-VASE.
18.
18. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, J. Appl. Phys. 83, 3323 (1998).
http://dx.doi.org/10.1063/1.367101
19.
19. B. Johs and J. S. Hale, Phys. Stat. Solidi (a) 205, 715 (2008).
http://dx.doi.org/10.1002/pssa.200777754
20.
20. R. J. Powell and W. E. Spicer, Phys. Rev. B 2, 2182 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2182
21.
21. R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzinger, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, J. Vac. Sci. Technol. B 22, 3450 (2004).
http://dx.doi.org/10.1116/1.1813455
22.
22. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, in Handbook of Optical Constants of Solids II, edited by E. D. Palik (Academic Press, San Diego, CA, 1991), p. 1059.
23.
23. T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, Thin Solid Films 313-314, 718 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00984-X
24.
24. S. Roberts, Phys. Rev. 114, 104 (1959).
http://dx.doi.org/10.1103/PhysRev.114.104
25.
25. H. Raether, Solid State Excitations by Electrons, in Springer Tracts in Modern Physics, edited by G. Höhler (Springer, Berlin, 1965), vol. 38, p. 84.
26.
26. P. Drude, The Theory of Optics (Longmans, Green, and Company, New York, 1902), p. 398.
27.
27. P. B. Johnson and R. W. Christy, Phys. Rev. B 11, 1315 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.1315
28.
28. H. Ehrenreich, H. R. Philipp, and D. J. Olechna, Phys. Rev. 131, 2469 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2469
29.
29. D. Y. Petrovykh, K. N. Altmann, H. Höchst, M. Laubscher, S. Maat, G. J. Mankey, and F. J. Himpsel, Appl. Phys. Lett. 73, 3459 (1998).
http://dx.doi.org/10.1063/1.122796
30.
30. M. Losurdo et al., J. Phys. Chem. C 116, 23004 (2012).
http://dx.doi.org/10.1021/jp307936k
31.
31. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, Opt. Express 16, 1186 (2008).
http://dx.doi.org/10.1364/OE.16.001186
32.
32. D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83, 471 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.471
33.
33. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
34.
34. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).
35.
35. H. Litschel and I. Pop, J. Phys. Chem. Solids 46, 1421 (1985).
http://dx.doi.org/10.1016/0022-3697(85)90081-2
36.
36. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
37.
37. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
38.
38. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1425
39.
39. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
40.
40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
41.
41. P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B 53, R10441 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R10441
42.
42. J. M. Soler, E. Artacho, J. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Mat. 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
43.
43. F. El-Mellouhi, N. Mousseau, and P. Ordejon, Phys. Rev. B 70, 205202 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205202
44.
44. M.Ph. Stoll and C. Jung, J. Phys. F Met. Phys. 9, 2491 (1979).
http://dx.doi.org/10.1088/0305-4608/9/12/022
45.
45. C. S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.4897
46.
46. M. B. Stearns, J. Mag. Mag. Mat. 5, 167 (1977).
http://dx.doi.org/10.1016/0304-8853(77)90185-8
47.
47. L. G. Wang and Alex Zunger, Phys. Rev. B 67, 092103 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.092103
48.
48. A. Pisanty, C. Amador, Y. Ruiz, and M. de la Vega, Phys. Rev. B 80, 237 (1990).
49.
49.See Supplemental Material at http://dx.doi.org/10.1063/1.4861214 for tabulated dielectric functions of Ni1 − xPtx alloys at 300 K versus energy from 0.8 to 6.6 eV for x=0, 0.10, 0.15, 0.20, 0.25. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861214
Loading
/content/aip/journal/adva/4/1/10.1063/1.4861214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4861214
2014-01-02
2014-10-23

Abstract

Using spectroscopic ellipsometry and Drude-Lorentz oscillator fitting, we determined the dielectric function and optical conductivity versus photon energy from 0.76 to 6.6 eV of 10 nm thick Ni Pt alloy (0<<0.25) films deposited on thick thermal oxides. We find absorption peaks near 1.6 and 5.0 eV due to interband optical transitions. There is a significant broadening of the UV peak with increasing Pt content, since the bandwidth of the 3d electrons in Ni is smaller than that of the 5d bands in Pt. Our experimental observation is consistent with calculations of the density of states for Ni, Pt, and the Ni Pt compound. Annealing the metals at 500°C for 30 s increases the optical conductivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4861214.html;jsessionid=1eskbu1h81hn5.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4861214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical conductivity of Ni1 − xPtx alloys (0<x<0.25) from 0.76 to 6.6 eV
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861214
10.1063/1.4861214
SEARCH_EXPAND_ITEM