1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Hybrid plasmonic waveguide in a metal V-groove
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4861582
1.
1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 2.
2.
2. A. Liebsch, Phys. Rev. Lett. 54, 6770 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.67
3.
3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature (London) 440, 508511 (2006).
http://dx.doi.org/10.1038/nature04594
4.
4. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496500 (2008).
http://dx.doi.org/10.1038/nphoton.2008.131
5.
5. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155107
6.
6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229232 (2003).
http://dx.doi.org/10.1038/nmat852
7.
7. G. Veronis and S. Fan, Opt. Lett. 30, 33593361 (2005).
http://dx.doi.org/10.1364/OL.30.003359
8.
8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106061103 (2005).
http://dx.doi.org/10.1063/1.1991990
9.
9. Y. Ming, Z. J. Wu, H. Wu, F. Xu, and Y. Q. Lu, IEEE Photonics J. 4, 291299 (2012).
http://dx.doi.org/10.1109/JPHOT.2012.2186562
10.
10. X. Zhang, H. Tang, J. A. Huang, L. Luo, J. A. Zapien, and S.-T. Lee, Nano Lett. 11, 46264630 (2011).
http://dx.doi.org/10.1021/nl202110g
11.
11. Z. J. Wu, Y. Ming, F. Xu, and Y. Q. Lu, Opt. Express 20, 1719217200 (2012).
http://dx.doi.org/10.1364/OE.20.017192
12.
12. M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.137404
13.
13. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, Nat. Photon. 6, 838844 (2012).
http://dx.doi.org/10.1038/nphoton.2012.277
14.
14. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 10691071 (2004).
http://dx.doi.org/10.1364/OL.29.001069
15.
15. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, J. Appl. Phys. 103, 034304034306 (2008).
http://dx.doi.org/10.1063/1.2832441
16.
16. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, Opt. Lett. 31, 34473449 (2006).
http://dx.doi.org/10.1364/OL.31.003447
17.
17. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, Nano Lett. 9, 12781282 (2009).
http://dx.doi.org/10.1021/nl900268v
18.
18. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 20, 61246134 (2012).
http://dx.doi.org/10.1364/OE.20.006124
19.
19. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Appl. Phys. Lett. 89, 143108143103 (2006).
http://dx.doi.org/10.1063/1.2358953
20.
20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.046802
21.
21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature (London) 461, 629632 (2009).
http://dx.doi.org/10.1038/nature08364
22.
22. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, Opt. Express 19, 28582865 (2011).
http://dx.doi.org/10.1364/OE.19.002858
23.
23. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321328 (2011).
http://dx.doi.org/10.1021/nl103070n
24.
24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
25.
25. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
http://dx.doi.org/10.1088/1367-2630/10/10/105018
26.
26. R. Buckley and P. Berini, Opt. Express 15, 1217412182 (2007).
http://dx.doi.org/10.1364/OE.15.012174
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861582
Loading
/content/aip/journal/adva/4/1/10.1063/1.4861582
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4861582
2014-01-03
2014-12-25

Abstract

We propose and investigate a type of hybrid plasmonic waveguide in a metal V-groove. A high-permittivity nanowire was placed in the metal channel covered with a dielectric film of lower permittivity. Deeper sub-wavelength confinement and much longer propagation distance were achieved in comparison with conventional channel plasmonic waveguides. The overall performance was improved as compared with the conventional hybrid plasmonic structure based on a flat metal surface. Finite element analysis showed that both the mode propagation and field profile can be adjusted by changing the nanowire radius and film thickness. Some benefits, such as a reduced scattering loss caused by the surface roughness, are also expected owing to the unique mode profile. The proposed approach has potential for application in high-level photonic integration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4861582.html;jsessionid=3ucbhmikcdedg.x-aip-live-03?itemId=/content/aip/journal/adva/4/1/10.1063/1.4861582&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hybrid plasmonic waveguide in a metal V-groove
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861582
10.1063/1.4861582
SEARCH_EXPAND_ITEM