Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 2.
2. A. Liebsch, Phys. Rev. Lett. 54, 6770 (1985).
3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature (London) 440, 508511 (2006).
4. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496500 (2008).
5. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229232 (2003).
7. G. Veronis and S. Fan, Opt. Lett. 30, 33593361 (2005).
8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106061103 (2005).
9. Y. Ming, Z. J. Wu, H. Wu, F. Xu, and Y. Q. Lu, IEEE Photonics J. 4, 291299 (2012).
10. X. Zhang, H. Tang, J. A. Huang, L. Luo, J. A. Zapien, and S.-T. Lee, Nano Lett. 11, 46264630 (2011).
11. Z. J. Wu, Y. Ming, F. Xu, and Y. Q. Lu, Opt. Express 20, 1719217200 (2012).
12. M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
13. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, Nat. Photon. 6, 838844 (2012).
14. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 10691071 (2004).
15. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, J. Appl. Phys. 103, 034304034306 (2008).
16. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, Opt. Lett. 31, 34473449 (2006).
17. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, Nano Lett. 9, 12781282 (2009).
18. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 20, 61246134 (2012).
19. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Appl. Phys. Lett. 89, 143108143103 (2006).
20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature (London) 461, 629632 (2009).
22. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, Opt. Express 19, 28582865 (2011).
23. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321328 (2011).
24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
25. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
26. R. Buckley and P. Berini, Opt. Express 15, 1217412182 (2007).

Data & Media loading...


Article metrics loading...



We propose and investigate a type of hybrid plasmonic waveguide in a metal V-groove. A high-permittivity nanowire was placed in the metal channel covered with a dielectric film of lower permittivity. Deeper sub-wavelength confinement and much longer propagation distance were achieved in comparison with conventional channel plasmonic waveguides. The overall performance was improved as compared with the conventional hybrid plasmonic structure based on a flat metal surface. Finite element analysis showed that both the mode propagation and field profile can be adjusted by changing the nanowire radius and film thickness. Some benefits, such as a reduced scattering loss caused by the surface roughness, are also expected owing to the unique mode profile. The proposed approach has potential for application in high-level photonic integration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd