1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Density functional theory study of the mechanism of Li diffusion in rutile RuO2
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4861583
1.
1. P. Balaya, H. Li, L. Kienle, and J. Maier, Advanced Functional Materials 13(8), 621625 (2003).
http://dx.doi.org/10.1002/adfm.200304406
2.
2. T. Ohzuku, K. Sawai, and T. Hirai, Journal of the Electrochemical Society 137, 3004 (1990).
http://dx.doi.org/10.1149/1.2086149
3.
3. E. Bekaert, P. Balaya, S. Murugavel, J. Maier, and M. Meéneétrier, Chemistry of materials 21(5), 856861 (2009).
http://dx.doi.org/10.1021/cm8028005
4.
4. H. X. Ji, X. L. Wu, L. Z. Fan, C. Krien, I. Fiering, Y. G. Guo, Y. Mei, and O. G. Schmidt, Advanced Materials 22(41), 45914595 (2010).
http://dx.doi.org/10.1002/adma.201001422
5.
5. Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, and J. Maier, Advanced Materials 19(15), 19631966 (2007).
http://dx.doi.org/10.1002/adma.200700697
6.
6. F. Zhang, S. Passerini, B. B. Owens, and W. H. Smyrl, Electrochemical and Solid-State Letters 4, A221 (2001).
http://dx.doi.org/10.1149/1.1416128
7.
7. J. Liu and A. Manthiram, J. Mater. Chem. 20(19), 39613967 (2010).
http://dx.doi.org/10.1039/b925711j
8.
8. M. Armand, F. Dalard, D. Deroo, and C. Mouliom, Solid State Ionics 15(3), 205210 (1985).
http://dx.doi.org/10.1016/0167-2738(85)90004-9
9.
9. P. Dalard, D. Deroo, D. Foscallo, and C. Mouliom, Solid State Ionics 15(2), 9194 (1985).
http://dx.doi.org/10.1016/0167-2738(85)90085-2
10.
10. O. Delmer, “Max Planck Institute for Solid State Research,” Stuttgart (2010).
11.
11. W. Ryden, A. Lawson, and C. C. Sartain, Physical Review B 1, 14941500 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1494
12.
12. G. Kresse and J. Furthmüller, Physical Review B 54(16), 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
13.
13. G. Kresse and D. Joubert, Physical Review B 59(3), 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
14.
14. P. E. Blöchl, Physical Review B 50(24), 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
15.
15. J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, and C. Fiolhais, Physical Review B 46(11), 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
16.
16. G. Henkelman, B. P. Uberuaga, and H. Jónsson, The Journal of Chemical Physics 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
17.
17. H. Jonsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore, 1998).
18.
18. M. Johannes, A. Stux, and K. Swider-Lyons, Physical Review B 77(7), 075124 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075124
19.
19. I. J. Davidson and J. Greedan, Journal of Solid State Chemistry 51(1), 104117 (1984).
http://dx.doi.org/10.1016/0022-4596(84)90321-9
20.
20. D. Murphy, F. Di Salvo, J. Carides, and J. Waszczak, Materials Research Bulletin 13(12), 13951402 (1978).
http://dx.doi.org/10.1016/0025-5408(78)90131-9
21.
21. G. Henkelman, A. Arnaldsson, and H. Jónsson, Computational Materials Science 36(3), 354360 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
22.
22. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Journal of Computational Chemistry 28(5), 899908 (2007).
http://dx.doi.org/10.1002/jcc.20575
23.
23. M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Physical Review Letters 86(7), 12751278 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1275
24.
24. M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Solid State Ionics 157(1), 3538 (2003).
http://dx.doi.org/10.1016/S0167-2738(02)00186-8
25.
25. M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Physical Review B 65(23), 235423 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235423
26.
26. N. Peterson, Journal of Nuclear Materials 69, 337 (1978).
http://dx.doi.org/10.1016/0022-3115(78)90234-9
27.
27. W. Frank, U. Breier, C. Elsässer, and M. Fähnle, Physical Review Letters 77(3), 518521 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.518
28.
28. F. Montalenti, D. Migas, F. Gamba, and L. Miglio, Physical Review B 70(24), 245315 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245315
29.
29. D. Morgan, A. Van der Ven, and G. Ceder, Electrochemical and Solid-State Letters 7, A30 (2004).
http://dx.doi.org/10.1149/1.1633511
30.
30. T. Mueller, G. Hautier, A. Jain, and G. Ceder, Chemistry of materials 23(17), 38543862 (2011).
http://dx.doi.org/10.1021/cm200753g
31.
31. K. Kang, D. Morgan, and G. Ceder, Physical Review B 79(1), 014305 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014305
32.
32. K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, and I. Tanaka, Physical Review B 78(21), 214303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.214303
33.
33. K. Toyoura, Y. Koyama, A. Kuwabara, and I. Tanaka, The Journal of Physical Chemistry C 114(5), 23752379 (2010).
http://dx.doi.org/10.1021/jp910134u
34.
34. G. H. Vineyard, Journal of Physics and Chemistry of Solids 3(1–2), 121127 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90059-8
35.
35. A. Togo, L. Chaput, I. Tanaka, and G. Hug, Physical Review B 81(17), 174301 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.174301
36.
36. A. Togo, F. Oba, and I. Tanaka, Physical Review B 78(13), 134106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134106
37.
37. A. Togo, Phonopy http://phonopy.sourceforge.net/.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861583
Loading
/content/aip/journal/adva/4/1/10.1063/1.4861583
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4861583
2014-01-06
2014-09-21

Abstract

First-principle calculations are carried out to study the diffusion of Li ions in rutile structure RuO, a material for positive electrodes in rechargeable Li ion batteries. The calculations focus on migration pathways and energy barriers for diffusion in Li-poor and Li-rich phases using the Nudged Elastic Band Method. Diffusion coefficients estimated based on calculated energy barriers are in good agreement with experimental values reported in the literature. The results confirm the anisotropic nature of diffusion of Li ions in one-dimensional c channels along the [001] crystalline direction of rutile RuO and show that Li diffusion in the Li-poor phase is faster than in the Li-rich phase. The findings of fast Li diffusion and feasible Li insertion at low temperatures in the host rutile RuO suggest this material is a good ionic conductor for Li transport. The finding also suggests possible means for enhancing the performance of RuO-based electrode materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4861583.html;jsessionid=rgvre21ihh4p.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4861583&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density functional theory study of the mechanism of Li diffusion in rutile RuO2
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861583
10.1063/1.4861583
SEARCH_EXPAND_ITEM