Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4861585
1.
1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
http://dx.doi.org/10.1126/science.1125907
2.
2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
3.
3. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, Phys. Rev. E 74, 036621 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.036621
4.
4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photonic. Nanostruct. 6, 87 (2008).
http://dx.doi.org/10.1016/j.photonics.2007.07.013
5.
5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nature Photonics 1, 224 (2007).
http://dx.doi.org/10.1038/nphoton.2007.28
6.
6. D. P. Gaillot, C. Croënne, and D. Lippens, Optics Express 16, 3986 (2008).
http://dx.doi.org/10.1364/OE.16.003986
7.
7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Optic. Express 16, 5444 (2008).
http://dx.doi.org/10.1364/OE.16.005444
8.
8. A. Alù and N. Engheta, Phys. Rev. Let. 100, 113901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.113901
9.
9. A. Alù, Phys. Rev. B 80, 245115 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245115
10.
10. J. Andkjær and O. Sigmund, Appl. Phys. Lett. 98, 021112 (2011).
http://dx.doi.org/10.1063/1.3540687
11.
11. X. Wang and E. Semouchkina, Appl. Phys. Lett. 102, 113506 (2013).
http://dx.doi.org/10.1063/1.4796171
12.
12. B. I. Popa and S. A. Cummer, Phys. Rev. A 79, 023806 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.023806
13.
13. Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, J. Phys. Appl. Phys. 44, 185102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/18/185102
14.
14. N. Okada and J. B. Cole, J. Opt. Soc. Am. B 29, 3344 (2012).
http://dx.doi.org/10.1364/JOSAB.29.003344
15.
15. W. Song, R. J. Shi, and X. Q. Sheng, Prog. Electromagn. Res. Lett. 36, 87 (2013).
16.
16. G. W. Milton, The theory of composites (Cambridge University Press, 2002).
17.
17. J. M. Jin and D. J. Riley, Finite element analysis of antennas and arrays (Wiley-IEEE Press, 2009).
18.
18. C. A. Valagiannopoulos and P. Alitalo, Phys. Rev. B 85, 115402 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115402
19.
19. P. E. Gill, W. Murray, and M. A. Saunders, SIAM review 47, 99 (2005).
http://dx.doi.org/10.1137/S0036144504446096
20.
20. H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
http://dx.doi.org/10.1038/nmat2743
21.
21. Y. Liu and X. Zhang, Nanoscale 4, 5277 (2012).
http://dx.doi.org/10.1039/c2nr31140b
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4861585
Loading
/content/aip/journal/adva/4/1/10.1063/1.4861585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4861585
2014-01-03
2016-09-27

Abstract

Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4861585.html;jsessionid=0epjtLwH-8xvaI20msZOp0jl.x-aip-live-06?itemId=/content/aip/journal/adva/4/1/10.1063/1.4861585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4861585&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4861585'
Right1,Right2,Right3,