Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. K. Ferry and S. M. Goodnick, ‘Transport in Nanostructures’, CUP (1997).
2. A. Gold, Z. Phys. B – Condensed Matter, 74, 53 (1989).
3. R. Gottinger, A. Gold, G. Abstreiter, G. Weimann, and W. Schalpp, Europhys. Lett. 6, 183 (1988).
4. B. R. Nag and Mukhyopadhyaya, J. Phys.: Condens. Matter. 3, 3757 (1991).
5. S. Mukhopadhyaya and B. R. Nag, Appl. Phys. Lett. 60, 2897 (1992).
6. K. Suresh, S. S. Kubakaddi and B. G. Mulimani, Physica E 21, 143 (2004).
7. B. L. Gallagher and P. N. Butcher, in ‘Handbook on Semiconductors’, (Ed.) P. T. Landsberg (Elsevier, Amsterdam, 1992) vol. 1, p. 817.
8. R. Fletcher, Semicond.Sci.Technol. 14, R1 (1999).
9. M. D. Kamatagi, N. S. Sankeshwar, and B. G. Mulimani, Phys. Rev. B. 71, 125334 (2005);
9.N. S. Sankeshwar, S. S. Kubakaddi, B. G. Mulimani, and P. N. Butcher, Semicond. Sci. and Tech. 7, 931 (1992).
10. P. J. Price, Ann. Physics 133, 217 (1981).
11. D. G. Cantrell and P. N. Butcher, J. Phys. C: Solid State Phys. 20, 1985 (1987);
11.D. G. Cantrell and P. N. Butcher, J. Phys. C: Solid State Phys. 20, 1993 (1987).
12. Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, J. Appl. Phys. 94, 2279 (2003).
13. Kai Cui, Saeed Fathololoumi, Md Golam Kibria, Gianluigi A. Botton, and Zetian Mi, Nanotechnology 23, 085205 (2012).
14. J. Grandal, J. Pereiro, A. Bengoechea-Encabo, S. Fernandez-Garrido, M. A. Sanchez-Gracia, E. Munoz, E. Calleja, E. Luna, and A. Trampert, Appl. Phys. Lett. 98, 061901 (2011).
15. F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, J. A. Mendez, G. R. Mutta, B. Lacroix, P. Ruterana, and E. Monroy, Appl. Phys. Lett. 98, 031902 (2012).
16. Song-Bek Che, T. Mizuno, X. Wang, Y. Ishitani, and A. Yoshikawa, J. Appl. Phys. 102, 083539 (2007).

Data & Media loading...


Article metrics loading...



Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In GaN quantum well for different values of show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd