Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4862168
1.
1. Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402, 273276 (1999).
http://dx.doi.org/10.1038/46241
2.
2. B. Gao, A. Komnik, R. Egger, D. C. Glattli, and A. Bachtold, “Evidence for luttinger-liquid behavior in crossed metallic single-wall nanotubes,” Phys. Rev. Lett. 92, 216804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.216804
3.
3. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397, 598601 (1999).
http://dx.doi.org/10.1038/17569
4.
4. S. Zaitsev-Zotov, Y. Kumzerov, Y. Firsov, and P. Monceau, “Unconventional magnetoresistance in long insb nanowires,” Journal of Experimental and Theoretical Physics Letters 77, 135139 (2003).
http://dx.doi.org/10.1134/1.1567775
5.
5. A. Choi, K. H. Kim, S. J. Hong, M. Goh, K. Akagi, R. B. Kaner, N. N. Kirova, S. A. Brazovskii, A. T. Johnson, D. A. Bonnell, E. J. Mele, and Y. W. Park, “Probing spin-charge relation by magnetoconductance in one-dimensional polymer nanofibers,” Phys. Rev. B 86, 155423 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155423
6.
6. V. V. Deshpande and M. Bockrath, “The one-dimensional wigner crystal in carbon nanotubes,” Nat Phys 4, 314318 (2008).
http://dx.doi.org/10.1038/nphys895
7.
7. A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buitelaar, and C. Schönenberger, “Suppression of tunneling into multiwall carbon nanotubes,” Phys. Rev. Lett. 87, 166801 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.166801
8.
8. E. Graugnard, P. J. de Pablo, B. Walsh, A. W. Ghosh, S. Datta, and R. Reifenberger, “Temperature dependence of the conductance of multiwalled carbon nanotubes,” Phys. Rev. B 64, 125407 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125407
9.
9. A. N. Aleshin, “Quasi-one-dimensional transport in conducting polymer nanowires,” Physics of the Solid State 49, 20152033 (2007).
http://dx.doi.org/10.1134/S1063783407110017
10.
10. A. N. Aleshin, H. J. Lee, S. H. Jhang, H. S. Kim, K. Akagi, and Y. W. Park, “Coulomb-blockade transport in quasi-one-dimensional polymer nanofibers,” Phys. Rev. B 72, 153202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.153202
11.
11. A. N. Aleshin, H. J. Lee, Y. W. Park, and K. Akagi, “One-dimensional transport in polymer nanofibers,” Phys. Rev. Lett. 93, 196601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196601
12.
12. S. V. Zaitsev-Zotov, Y. A. Kumzerov, Y. A. Firsov, and P. Monceau, “Luttinger-liquid-like transport in long insb nanowires,” Journal of Physics: Condensed Matter 12, L303 (2000).
http://dx.doi.org/10.1088/0953-8984/12/20/101
13.
13. E. Levy, I. Sternfeld, M. Eshkol, M. Karpovski, B. Dwir, A. Rudra, E. Kapon, Y. Oreg, and A. Palevski, “Experimental evidence for luttinger liquid behavior in sufficiently long gaas v-groove quantum wires,” Phys. Rev. B 85, 045315 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045315
14.
14. A. M. Chang, L. N. Pfeiffer, and K. W. West, “Observation of chiral luttinger behavior in electron tunneling into fractional quantum hall edges,” Phys. Rev. Lett. 77, 25382541 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2538
15.
15. V. Datsyuk, M. Lisunova, M. Kasimir, S. Trotsenko, K. Gharagozloo-Hubmann, I. Firkowska, and S. Reich, “Thermal transport of oil and polymer composites filled with carbon nanotubes,” Applied Physics A 105, 781788 (2011).
http://dx.doi.org/10.1007/s00339-011-6667-7
16.
16. J.-S. Kim and D. H. Reneker, “Polybenzimidazole nanofiber produced by electrospinning,” Polymer Engineering & Science 39, 849854 (1999).
http://dx.doi.org/10.1002/pen.11473
17.
17. B. M. wall Carbon Nanotubes, N. Processing, and D. Product, “Baytubes C 150 P,” (2010) .
18.
18. F. Du, J. E. Fischer, and K. I. Winey, “Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites,” Phys. Rev. B 72, 121404 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.121404
19.
19. M. M. Fogler, S. Teber, and B. I. Shklovskii, “Variable-range hopping in quasi-one-dimensional electron crystals,” Phys. Rev. B 69, 035413 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.035413
20.
20. T. Hu and B. I. Shklovskii, “Hopping conductivity of a suspension of flexible wires in an insulator,” Phys. Rev. B 74, 174201 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.174201
21.
21. H. Xie and P. Sheng, “Fluctuation-induced tunneling conduction through nanoconstrictions,” Phys. Rev. B 79, 165419 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165419
22.
22. B. Sundaray, A. Choi, and Y. W. Park, “Highly conducting electrospun polyaniline-polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubes,” Synthetic Metals 160, 984988 (2010).
http://dx.doi.org/10.1016/j.synthmet.2010.02.013
23.
23. D. Khmel'nitskii and A. Larkin, “Mobility edge shift in external magnetic field,” Solid State Communications 39, 10691070 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90210-6
24.
24. J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58, R7492R7495 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R7492
25.
25. A. Avnon, V. Datsyuk, S. Trotsenko, B. Wang, S. Zhuo, N. Grabbert, and H.-D. Ngo, “Zero Bias anomaly in an individual suspended electrospun nanofiber,” (2013), manuscript under submission.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4862168
Loading
/content/aip/journal/adva/4/1/10.1063/1.4862168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4862168
2014-01-09
2016-12-06

Abstract

We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α ∼ 0.06 which agrees with theoretical predictions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4862168.html;jsessionid=0-EB2irL7NHblHH6XzswraXD.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4862168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4862168&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4862168'
Right1,Right2,Right3,