Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4862253
1.
1. Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie, and L. S. Zheng, J. Am. Chem. Soc. 129, 6070 (2007).
http://dx.doi.org/10.1021/ja070788m
2.
2. Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng, and L. Q. Luo, Appl. Surf. Sci. 242, 212 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.08.013
3.
3. F. J. Arregui, Y. J. Liu, I. R. Matias, and R. O. Claus, Sens. Actuators B 59, 54 (1999).
http://dx.doi.org/10.1016/S0925-4005(99)00232-4
4.
4. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, Sens. Actuators B 69, 127 (2000).
http://dx.doi.org/10.1016/S0925-4005(00)00524-4
5.
5. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
http://dx.doi.org/10.1049/el:19930267
6.
6. M. G. Xu, H. Geiger, and J. P. Dakin, Electron. Lett. 32, 128 (1996).
http://dx.doi.org/10.1049/el:19960022
7.
7. V. Rajaraman, K. A. A. Makinwa, and P. J. French, Proc. ASDAM 2008, 327 (2008).
8.
8. W. Kuehnel, Sens. Actuators A 48, 101 (1995).
http://dx.doi.org/10.1016/0924-4247(94)00983-O
9.
9. L. M. Roylance and J. B. Angell, IEEE Trans. Electron Devices ED-26, 1911 (1979).
http://dx.doi.org/10.1109/T-ED.1979.19795
10.
10. Y. B. Ning, Y. Loke, and G. McKinnon, Sens. Actuators A 48, 55 (1995).
http://dx.doi.org/10.1016/0924-4247(95)00981-7
11.
11. C. Ratcliffe, D. Heider, R. Crane, C. Krauthauser, M. K. Yoon, and J. W. Gillespie Jr., Compos. Struct. 82, 61 (2008).
http://dx.doi.org/10.1016/j.compstruct.2006.11.012
12.
12. D. J. Young, J. G. Du, C. A. Zorman, and W. H. Ko, IEEE Sens. J. 4, 464 (2004).
http://dx.doi.org/10.1109/JSEN.2004.830301
13.
13. S. W. Or, H. L. W. Chan, V. C. Loa, and C. W. Yuen, Sens. Actuators A 65, 69 (1998).
http://dx.doi.org/10.1016/S0924-4247(97)01638-5
14.
14. C. Z. Wei, W. Zhou, Q. Wang, X. Y. Xia, and X. X. Li, Microelectron. Eng. 91, 167 (2012).
http://dx.doi.org/10.1016/j.mee.2011.10.001
15.
15. S. K. Patil, Z. Celik-Butler, and D. P. Butler, Ultramicroscopy 110, 1154 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.04.012
16.
16. V. Rajaraman, B. S. Hau, L. A. Rocha, P. J. French, and K. A. A. Makinwa, Procedia Eng. 5, 1063 (2010).
http://dx.doi.org/10.1016/j.proeng.2010.09.293
17.
17. V. Rajaraman, B. S. Hau, L. A. Rocha, R. A. Dias, K. A. A. Makinwa, and R. Dekker, Proc. Transducers 2011, 2066 (2011).
18.
18. A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, J. Microelectromech. Syst. 9, 58 (2000).
http://dx.doi.org/10.1109/84.825778
19.
19. J. P. Lynch, A. Partridge, K. H. Law, T. W. Kenny, A. S. Kiremidjian, and E. Carryer, J. Aerosp. Eng. 16, 108 (2003).
http://dx.doi.org/10.1061/(ASCE)0893-1321(2003)16:3(108)
20.
20. L. Zhang, J. Lu, H. Takagi, and R. Maeda, Jpn. J. Appl. Phys. 52, 106502 (2013).
http://dx.doi.org/10.7567/JJAP.52.106502
21.
21. L. Zhang, J. Lu, H. Takagi, and R. Maeda, Proc. MNE 2013, 174 (2013).
22.
22. C. Liu, Foundations of MEMS (Prentice Hall, New Jersey, 2006)
23.
23. N. Smith and P. Arnett, Appl. Phys. Lett. 78, 1448 (2001).
http://dx.doi.org/10.1063/1.1352694
24.
24. K. Dagge, W. Frank, A. Seeger, and H. Stoll, Appl. Phys. Lett. 68, 1198 (1996).
http://dx.doi.org/10.1063/1.115967
25.
25. W. T. Park, A. Partridge, R. N. Candler, V. Ayanoor-Vitikkate, G. Yama, M. Lutz, and T. W. Kenny, J. Microelectromech. Syst. 15, 507 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.876648
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4862253
Loading
/content/aip/journal/adva/4/1/10.1063/1.4862253
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4862253
2014-01-13
2016-09-27

Abstract

Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4862253.html;jsessionid=A7lazgUWkaoOIV7dbx6rHKYL.x-aip-live-03?itemId=/content/aip/journal/adva/4/1/10.1063/1.4862253&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4862253&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4862253'
Right1,Right2,Right3,