Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie, and L. S. Zheng, J. Am. Chem. Soc. 129, 6070 (2007).
2. Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng, and L. Q. Luo, Appl. Surf. Sci. 242, 212 (2005).
3. F. J. Arregui, Y. J. Liu, I. R. Matias, and R. O. Claus, Sens. Actuators B 59, 54 (1999).
4. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, Sens. Actuators B 69, 127 (2000).
5. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Electron. Lett. 29, 398 (1993).
6. M. G. Xu, H. Geiger, and J. P. Dakin, Electron. Lett. 32, 128 (1996).
7. V. Rajaraman, K. A. A. Makinwa, and P. J. French, Proc. ASDAM 2008, 327 (2008).
8. W. Kuehnel, Sens. Actuators A 48, 101 (1995).
9. L. M. Roylance and J. B. Angell, IEEE Trans. Electron Devices ED-26, 1911 (1979).
10. Y. B. Ning, Y. Loke, and G. McKinnon, Sens. Actuators A 48, 55 (1995).
11. C. Ratcliffe, D. Heider, R. Crane, C. Krauthauser, M. K. Yoon, and J. W. Gillespie Jr., Compos. Struct. 82, 61 (2008).
12. D. J. Young, J. G. Du, C. A. Zorman, and W. H. Ko, IEEE Sens. J. 4, 464 (2004).
13. S. W. Or, H. L. W. Chan, V. C. Loa, and C. W. Yuen, Sens. Actuators A 65, 69 (1998).
14. C. Z. Wei, W. Zhou, Q. Wang, X. Y. Xia, and X. X. Li, Microelectron. Eng. 91, 167 (2012).
15. S. K. Patil, Z. Celik-Butler, and D. P. Butler, Ultramicroscopy 110, 1154 (2010).
16. V. Rajaraman, B. S. Hau, L. A. Rocha, P. J. French, and K. A. A. Makinwa, Procedia Eng. 5, 1063 (2010).
17. V. Rajaraman, B. S. Hau, L. A. Rocha, R. A. Dias, K. A. A. Makinwa, and R. Dekker, Proc. Transducers 2011, 2066 (2011).
18. A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, J. Microelectromech. Syst. 9, 58 (2000).
19. J. P. Lynch, A. Partridge, K. H. Law, T. W. Kenny, A. S. Kiremidjian, and E. Carryer, J. Aerosp. Eng. 16, 108 (2003).
20. L. Zhang, J. Lu, H. Takagi, and R. Maeda, Jpn. J. Appl. Phys. 52, 106502 (2013).
21. L. Zhang, J. Lu, H. Takagi, and R. Maeda, Proc. MNE 2013, 174 (2013).
22. C. Liu, Foundations of MEMS (Prentice Hall, New Jersey, 2006)
23. N. Smith and P. Arnett, Appl. Phys. Lett. 78, 1448 (2001).
24. K. Dagge, W. Frank, A. Seeger, and H. Stoll, Appl. Phys. Lett. 68, 1198 (1996).
25. W. T. Park, A. Partridge, R. N. Candler, V. Ayanoor-Vitikkate, G. Yama, M. Lutz, and T. W. Kenny, J. Microelectromech. Syst. 15, 507 (2006).

Data & Media loading...


Article metrics loading...



Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd