NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging
Rent this article for
Access full text Article
1. M. M. Sigalas and E. N. Economou, J. Sound Vib. 158, 377 (1992).
2. M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. B 49, 2313 (1994).
3. Y. Tanaka and S. Tamura, Phys. Rev. B 58, 7958 (1998).
4. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
5. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Phys. Rev. E 74, 046610 (2006).
6. J. Mei, Z. Liu, W. Wen, and P. Sheng, Phys. Rev. Lett. 96, 024301 (2006).
7. F. Wu, Z. Liu, and Y. Liu, Phys. Rev. E 69, 066609 (2004).
8. J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A.-C. Hladky-Hennion, Phys. Rev. B 77, 085415 (2008).
9. R. H. Olsson III and I. El-Kady, Meas. Sci. Technol. 20, 012002 (2009).
10. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).
11. X. Zhang and Z. Liu, Appl. Phys. Lett. 85, 341 (2004).
12. S. Guenneau, A. Movchan, G. Pétursson, and S. A. Ramakrishna, New. J. Phys. 9, 399 (2007).
13. M. Ambati, N. Fang, C. Sun, and X. g. Zhang, Phys. Rev. B 75, 195447 (2007).
14. A. A. Maznev, K. A. Nelson, and J. A. Rogers, Opt. Lett. 23, 1319 (1998).
15. A. A. Maznev, O. B. Wright, and O. Matsuda, New. J. Phys. 13, 013037 (2011).
16. J. W. Dally, Exp. Mech. 20, 409 (1980).
17. R. E. Vines, M. R. Hauser, and J. P. Wolfe, Z. Phys. B 98, 255 (1995).
18. J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa, Opt. Lett. 25, 613 (2000).
19. M. Clark, S. D. Sharples, and M. G. Somekh, J. Acoust. Soc. Am. 107, 3179 (2000).
20. Y. Sugawara, O. B. Wright, O. Matsuda, M. Takigahira, Y. Tanaka, S. Tamura, and V. E. Gusev, Phys. Rev. Lett. 88, 185504 (2002).
21. A. A. Maznev, A. M. Lomonosov, P. Hess, and A. A. Kolomenskii, Eur. Phys. J. B 35, 429 (2003).
22. C. Glorieux, K. Van de Rostyne, J. D. Beers, W. Gao, S. Petillion, N. V. Riet, K. A. Nelson, J. F. Allard, V. E. Gusev, W. Lauriks, and J. Thoen, Rev. Sci. Instrum. 74, 465 (2003).
23. Y. Sugawara, O. B. Wright, and O. Matsuda, Appl. Phys. Lett. 83, 1340 (2003).
24. D. M. Profunser, O. B. Wright, and O. Matsuda, Phys. Rev. Lett. 97, 055502 (2006).
25. D. M. Profunser, E. Muramoto, O. Matsuda, O. B. Wright, and U. Lang, Phys. Rev. B 80, 014301 (2009).
26. I. A. Veres, D. M. Profunser, A. A. Maznev, A. G. Every, O. Matsuda, and O. B. Wright, New. J. Phys. 14, 123015 (2012).
27. P. H. Otsuka, K. Nanri, O. Matsuda, M. Tomoda, D. M. Profunser, I. A. Veres, S. Danworaphong, A. Khelif, S. Benchabane, V. Laude, and O. B. Wright, Sci. Rep. 3, 3351 (2013).
28. B. Bonello, L. Belliard, J. Pierre, J. O. Vasseur, B. Perrin, and O. Boyko, Phys. Rev. B 82, 104109 (2010).
29. T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. H. Hurley, and O. B. Wright, Rev. Sci. Instrum. 77, 043713 (2006).
30. A. Bruchhausen, R. Gebs, F. Hudert, D. Issenmann, G. Klatt, A. Bartels, O. Schecker, R. Waitz, A. Erbe, E. Scheer, J. R. Huntzinger, A. Mlayah, and T. Dekorsy, Phys. Rev. Lett. 106, 077401 (2011).
31. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
32. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).
33. Y. K. Koh and D. G. Cahill, Phys. Rev. B 76, 075207 (2007).
34. J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, J. Appl. Phys. 108, 094315 (2010).
35.There are other two setups, the delay line in the upper stream of the modulator in the pump light path, and the delay line in the probe light path with the modulator in the pump light path (distinction of upper/lower stream inapplicable). The treatment in Eqs. (1)–(6) needs to be modified appropriately for these cases. The final result is that the acoustic vibrations at frequencies nω0 ± Ω in the t domain are mapped into the signals at frequency nω0 in the τ domain.
36.If the delay line is in the lower stream of the modulator in the pump light path, the mapped frequency is . If the delay line is in the upper stream of the modulator in either of the pump or probe light path, the mapped frequency is nω for both USB and LSB.
37. T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, J. Opt. Soc. Am. B 27, 2632 (2010).
38. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, England, 1995).

Data & Media loading...


Article metrics loading...



We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging