1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Investigation on transition behavior and electrical properties of (K0.5Na0.5)1-xLixNb0.84Ta0.1Sb0.06O3 around polymorphic phase transition region
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4863200
1.
1. B. K. Gan and K. Yao, Ceramics International 35, 20612067 (2009).
http://dx.doi.org/10.1016/j.ceramint.2008.11.015
2.
2. K. Bormanis, M. Dambeklne, A. Sternberg, A. Kalvane, and G. Grinvald, Ferroelectrics 257, 99104 (2001).
http://dx.doi.org/10.1080/00150190108016287
3.
3. A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, Journal of Materials Science 32, 32573262 (1997).
http://dx.doi.org/10.1023/A:1018675423174
4.
4. Z. H. Zhu, J. Xu, and Z. Y. Meng, Journal of Materials Science 33, 10231030 (1998)
http://dx.doi.org/10.1023/A:1004324214533
5.
5. F. Levassort, P. Tran-Huu-Hue, E. Ringaard, and M. Lethiecq, Journal of the European Ceramic Society 21, 13611365 (2001).
http://dx.doi.org/10.1016/S0955-2219(01)00019-X
6.
6. Z. Yang, Y. Chang, B. Liu, and L. L. Wei, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 432, 292298 (2006).
http://dx.doi.org/10.1016/j.msea.2006.06.034
7.
7. M. S. Chae, K. S. Lee, S. M. Koo, J. G. Ha, J. H. Jeon, and J. H. Koh, Journal of Electroceramics 30, 6065 (2013).
http://dx.doi.org/10.1007/s10832-012-9717-4
8.
8. D. B. Lin, Z. R. Li, S. J. Zhang, Z. Xu, and X. Yao, Journal of the American Ceramic Society 93(4), 941994 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03501.x
9.
9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
10.
10. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, Journal of Applied Physics 100, 104108 (2006)
http://dx.doi.org/10.1063/1.2382348
11.
11. X. M. Peng, J. H. Qiu, K. J. Zhu, and J. Luo, Journal of Materials Science 46, 23452349 (2011).
http://dx.doi.org/10.1007/s10853-010-5080-5
12.
12. E. Hollenstein and D. Damjanovic, N. Setter, Journal of the European Ceramic Society 27, 40934097 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.100
13.
13. Y. P. Guo, K. Kakimoto, and H. Ohsato, Applied Physics Letters 85, 4121 (2004).
http://dx.doi.org/10.1063/1.1813636
14.
14. S. J. Zhang, H. J. Lee, C. Ma, and X. L. Tan, Journal of the American Ceramic Society 94(1), 36593665 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04833.x
15.
15. H. Zhang, X. H. Wang, K. Fang, Y. C. Zhang, and L. T. Li, Journal of Electroceramics 30(4), 217220 (2013).
http://dx.doi.org/10.1007/s10832-013-9787-y
16.
16. T. Chen, H. L. Wang, T. Zhang, G. C. Wang, J. F. Zhou, J. W. Zhang, and Y. H. Liu, Ceramics International 39, 66196622 (2013).
http://dx.doi.org/10.1016/j.ceramint.2013.01.098
17.
17. D. J. Gao, K. W. Kwok, D. M. Lin, and H. L. W. Chan, Journal of Applied Physics 42, 035411 (6pp) (2009).
18.
18. J. Fuentes and J. Portelles, Applied Physics A 107, 773738 (2012).
http://dx.doi.org/10.1007/s00339-012-6793-x
19.
19. Y. F. Chang, S. Poterala, Z. P. Yang, and G. L. Messing, Journal of the American Ceramic Society 94(8), 24942498 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04393.x
20.
20. S. J. Zhang, R. Xia, H. Hao, H. X. Liu, and T. R. Shrout, Applied Physics Letters 92, 152904 (2008).
http://dx.doi.org/10.1063/1.2908960
21.
21. P. Kumar, M. Pattanaik, and Sonia, Ceramics International 39, 6569 (2013).
http://dx.doi.org/10.1016/j.ceramint.2012.05.093
22.
22. J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, P. Yu, and Y. H. Jiang, Journal of Applied Physics 102, 114113 (2007).
http://dx.doi.org/10.1063/1.2822454
23.
23. Y. J. Dai, X. W. Zhang, K. P. Chen, Applied Physics Letters 94, 042905 (2009).
http://dx.doi.org/10.1063/1.3076105
24.
24. Y. J. Dai, X. W. Zhang, and G. Y. Zhou, Applied Physics Letters 90, 262903 (2007).
http://dx.doi.org/10.1063/1.2751607
25.
25. B. Q. Ming, J. F. Wang, G. Z. Zang, C. M. Wang, Z. G. Gai, J. Du, and L. M. Zheng, ACTA PHYSICA SINICA 1000-3290/2008/57(09)/5962-06.
26.
26. Y. J. Zhao, Y. Z. Zhao, R. X. Huang, R. Z. Liu, H. P. Zhou, Journal of the American Ceramic Society, 94(3), 656659 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04353.x
27.
27. H. W. Du, Y. Q. Huang, H. P. Tang, W. Feng, H. N. Qin, and X. F. Lu, Ceramics International 39, 56895694 (2013).
http://dx.doi.org/10.1016/j.ceramint.2012.12.086
28.
28. D. B. Lin, Z. R. Li, S. J. Zhang, Z. Xu, and X. Yao, Solid State Communications 149, 16461649 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.06.029
29.
29. Y. J. Dai and X. W. Zhang, Journal of the European Ceramic Society 28, 31933198 (2008).
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.019
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863200
Loading
/content/aip/journal/adva/4/1/10.1063/1.4863200
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4863200
2014-01-24
2014-09-02

Abstract

(K Na )Li Nb Ta SbO (KNLNTS) lead free ceramics with different Li concentration were fabricated by conventional solid-state reaction method. By increasing Li ions in KNLNTS, the grains grow up and the crystal structure changes from orthorhombic to tetragonal. When 0.03 ≤ ≤ 0.05, the ceramics structure lays in PPT region. Polarization versus electric field (P-E) hysteresis loops at room temperature show good ferroelectric properties and the remnant polarization decreases by increasing Li content while coercive electric keeps almost unchanged. In PPT region, taking = 0.04 as an example, the sample shows excellent dielectric properties: the dielectric constant is 1159 and loss tangent is 0.04, while the piezoelectric constant is 245 /N and is 0.44 at room temperature, it is promising for (K Na )Li Nb Ta SbO with 4 at. % Li to substitute PZT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4863200.html;jsessionid=nsllcbthbkyv.x-aip-live-03?itemId=/content/aip/journal/adva/4/1/10.1063/1.4863200&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Investigation on transition behavior and electrical properties of (K0.5Na0.5)1-xLixNb0.84Ta0.1Sb0.06O3 around polymorphic phase transition region
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863200
10.1063/1.4863200
SEARCH_EXPAND_ITEM