NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Investigation on transition behavior and electrical properties of (K0.5Na0.5)1-xLixNb0.84Ta0.1Sb0.06O3 around polymorphic phase transition region
Rent this article for
Access full text Article
1. B. K. Gan and K. Yao, Ceramics International 35, 20612067 (2009).
2. K. Bormanis, M. Dambeklne, A. Sternberg, A. Kalvane, and G. Grinvald, Ferroelectrics 257, 99104 (2001).
3. A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, Journal of Materials Science 32, 32573262 (1997).
4. Z. H. Zhu, J. Xu, and Z. Y. Meng, Journal of Materials Science 33, 10231030 (1998)
5. F. Levassort, P. Tran-Huu-Hue, E. Ringaard, and M. Lethiecq, Journal of the European Ceramic Society 21, 13611365 (2001).
6. Z. Yang, Y. Chang, B. Liu, and L. L. Wei, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 432, 292298 (2006).
7. M. S. Chae, K. S. Lee, S. M. Koo, J. G. Ha, J. H. Jeon, and J. H. Koh, Journal of Electroceramics 30, 6065 (2013).
8. D. B. Lin, Z. R. Li, S. J. Zhang, Z. Xu, and X. Yao, Journal of the American Ceramic Society 93(4), 941994 (2010).
9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
10. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, Journal of Applied Physics 100, 104108 (2006)
11. X. M. Peng, J. H. Qiu, K. J. Zhu, and J. Luo, Journal of Materials Science 46, 23452349 (2011).
12. E. Hollenstein and D. Damjanovic, N. Setter, Journal of the European Ceramic Society 27, 40934097 (2007).
13. Y. P. Guo, K. Kakimoto, and H. Ohsato, Applied Physics Letters 85, 4121 (2004).
14. S. J. Zhang, H. J. Lee, C. Ma, and X. L. Tan, Journal of the American Ceramic Society 94(1), 36593665 (2011).
15. H. Zhang, X. H. Wang, K. Fang, Y. C. Zhang, and L. T. Li, Journal of Electroceramics 30(4), 217220 (2013).
16. T. Chen, H. L. Wang, T. Zhang, G. C. Wang, J. F. Zhou, J. W. Zhang, and Y. H. Liu, Ceramics International 39, 66196622 (2013).
17. D. J. Gao, K. W. Kwok, D. M. Lin, and H. L. W. Chan, Journal of Applied Physics 42, 035411 (6pp) (2009).
18. J. Fuentes and J. Portelles, Applied Physics A 107, 773738 (2012).
19. Y. F. Chang, S. Poterala, Z. P. Yang, and G. L. Messing, Journal of the American Ceramic Society 94(8), 24942498 (2011).
20. S. J. Zhang, R. Xia, H. Hao, H. X. Liu, and T. R. Shrout, Applied Physics Letters 92, 152904 (2008).
21. P. Kumar, M. Pattanaik, and Sonia, Ceramics International 39, 6569 (2013).
22. J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, P. Yu, and Y. H. Jiang, Journal of Applied Physics 102, 114113 (2007).
23. Y. J. Dai, X. W. Zhang, K. P. Chen, Applied Physics Letters 94, 042905 (2009).
24. Y. J. Dai, X. W. Zhang, and G. Y. Zhou, Applied Physics Letters 90, 262903 (2007).
25. B. Q. Ming, J. F. Wang, G. Z. Zang, C. M. Wang, Z. G. Gai, J. Du, and L. M. Zheng, ACTA PHYSICA SINICA 1000-3290/2008/57(09)/5962-06.
26. Y. J. Zhao, Y. Z. Zhao, R. X. Huang, R. Z. Liu, H. P. Zhou, Journal of the American Ceramic Society, 94(3), 656659 (2011).
27. H. W. Du, Y. Q. Huang, H. P. Tang, W. Feng, H. N. Qin, and X. F. Lu, Ceramics International 39, 56895694 (2013).
28. D. B. Lin, Z. R. Li, S. J. Zhang, Z. Xu, and X. Yao, Solid State Communications 149, 16461649 (2009).
29. Y. J. Dai and X. W. Zhang, Journal of the European Ceramic Society 28, 31933198 (2008).

Data & Media loading...


Article metrics loading...



(K Na )Li Nb Ta SbO (KNLNTS) lead free ceramics with different Li concentration were fabricated by conventional solid-state reaction method. By increasing Li ions in KNLNTS, the grains grow up and the crystal structure changes from orthorhombic to tetragonal. When 0.03 ≤ ≤ 0.05, the ceramics structure lays in PPT region. Polarization versus electric field (P-E) hysteresis loops at room temperature show good ferroelectric properties and the remnant polarization decreases by increasing Li content while coercive electric keeps almost unchanged. In PPT region, taking = 0.04 as an example, the sample shows excellent dielectric properties: the dielectric constant is 1159 and loss tangent is 0.04, while the piezoelectric constant is 245 /N and is 0.44 at room temperature, it is promising for (K Na )Li Nb Ta SbO with 4 at. % Li to substitute PZT.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Investigation on transition behavior and electrical properties of (K0.5Na0.5)1-xLixNb0.84Ta0.1Sb0.06O3 around polymorphic phase transition region