1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Analysing organic transistors based on interface approximation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4863296
1.
1. G. Horowitz, R. Hajlaoui, and P. Delannoy, J. Phys. III 5, 355 (1995).
2.
2. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
3.
3. G. Horowitz, J. Mater. Res. 19, 1946 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
4.
4. E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 76, 3433 (2000).
http://dx.doi.org/10.1063/1.126669
5.
5. E. J. Meijer, C. Tanase, P. W. M. Blom, E. van Veenedaal, B.-H. Huisman, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 80, 3838 (2002).
http://dx.doi.org/10.1063/1.1479210
6.
6. R. J. Chesterfield, J. C. McKeen, C. R. Newmann, C. D. Frisbie, P. C. Ewbank, K. R. Mann, and L. L. Miller, J. Appl. Phys. 95, 6396 (2004).
http://dx.doi.org/10.1063/1.1710729
7.
7. R. J. Chesterfield, J. C. McKeen, C. R. Newmann, P. C. Ewbank, D. A. da Silva Filho, J.-L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).
http://dx.doi.org/10.1021/jp046246y
8.
8. J. A. Letzia, J. Rivnay, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Func. Mater. 20, 50 (2010).
http://dx.doi.org/10.1002/adfm.200900831
9.
9. M. Ullah, A. Pivrikas, I. I. Fishchuk, A. Kadashchuk, P. Stadler, C. Simbrunner, N. S. Sariciftci, and H. Sitter, Appl. Phys. Lett. 98, 223301 (2011).
http://dx.doi.org/10.1063/1.3584131
10.
10. S. Kishida, Y. Naruke, Y. Ushida, and M. Matsumura, Jpn. J. Appl. Phys. 22, 511 (1983).
http://dx.doi.org/10.1143/JJAP.22.511
11.
11. M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984).
http://dx.doi.org/10.1063/1.332893
12.
12. M. Shur, M. Hack, and C. Hyun, J. Appl. Phys. 56, 382 (1984).
http://dx.doi.org/10.1063/1.333976
13.
13. M. Shur, C. Hyun, and M. Hack, J. Appl. Phys. 59, 2488 (1986).
http://dx.doi.org/10.1063/1.336994
14.
14. G. Fortunato and P. Migliorato, J. Appl. Phys. 68, 2463 (1990).
http://dx.doi.org/10.1063/1.346507
15.
15. M. Grünewald, P. Thoms, and D. Würtz, Phys, Status Solidi B 100, K139 (1980).
http://dx.doi.org/10.1002/pssb.2221000253
16.
16. M. Grünewald, K. Weber, W. Fuhs, and P. Thomas, J. Phys. (France) 42, 523 (1981).
17.
17. G. Fortunato, D. B. Meakin, P. Migliorato, and P. G. Le Comber, Philos. Mag. B 57, 573 (1988).
http://dx.doi.org/10.1080/13642818808211229
18.
18. K. Seki, E. Ito, H. Oji, D. Yoshimura, N. Hayashi, Y. Sakurai, Y. Hosoi, T. Yokoyama, T. Imai, Y. Ouchi, and H. Ishii, Synth. Met. 119, 19 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00596-8
19.
19. S. K. Passanner, K. Zojer, P. Pacher, E. Zojer, and F. Schurrer, Adv. Funct. Mater. 19, 958 (2009).
http://dx.doi.org/10.1002/adfm.200801466
20.
20. V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003).
http://dx.doi.org/10.1063/1.1631736
21.
21. D. V. Lang, X. Chi, T. Siegrist, A. M. Segrent, and A. P. Ramirez, Phys. Rev. Lett. 93, 86802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086802
22.
22. N. Kawasaki, T. Nagano, Y. Kubozono, Y. Sako, Y. Morimoto, Y. Takaguchi, A. Fujiwara, C.-C. Chu, and T. Imae, Appl. Phys. Lett. 91, 243515 (2007).
http://dx.doi.org/10.1063/1.2824818
23.
23. J. Puigdollers, A. Marsal, S. Cheylan, C. Voz, and R. Alcubilla, Org. Electr. 11, 1333 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.05.007
24.
24. W. L. Kalb, F. Meier, K. Mattenberger, and B. Batlogg, Phys. Rev. B 76, 184112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.184112
25.
25. W. L. Kalb, K. Mattenberger, and B. Batlogg, Phys. Rev. B 78, 035334 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035334
26.
26. W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 035327 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035327
27.
27. W. L. Kalb, S. Haas, C. Kreller, T. Mathis, and B. Batlogg, Phys. Rev. B 81, 155315 (2007).
http://dx.doi.org/10.1103/PhysRevB.81.155315
28.
28. K. Willa, R. Häusermann, T. Mathis, A. Facchetti, Z. Chen, and B. Batlogg, J. Appl. Phys. 113, 133707 (2013).
http://dx.doi.org/10.1063/1.4798610
29.
29. P. Stallinga and H. L. Gomes, Org. Electron. 7, 592 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.10.003
30.
30. Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, and G. Saito, Chem. Mater. 19, 6382 (2007).
http://dx.doi.org/10.1021/cm702690w
31.
31. T. Yamada, R. Kumai, Y. Takahashi, and T. Hasegawa, J. Mater. Chem. 20, 5810 (2010).
http://dx.doi.org/10.1039/c0jm01154a
32.
32. Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokio, and Y. Yamashita, J. Am. Chem. Soc. 127, 10142 (2005).
http://dx.doi.org/10.1021/ja051755e
33.
33. K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, Appl. Phys. Lett. 92, 023305 (2008).
http://dx.doi.org/10.1063/1.2834374
34.
34. T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, and G. Saito, Appl. Phys. Lett. 92, 233306 (2008).
http://dx.doi.org/10.1063/1.2940593
35.
35. M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, and C. Rovira, Appl. Phys. Lett. 86, 012110 (2005).
http://dx.doi.org/10.1063/1.1848179
36.
36. V. Podzorov, E. Menard, A. Brissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004)
http://dx.doi.org/10.1103/PhysRevLett.93.086602
37.
37. V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226601
38.
38. I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nature Mater. 5, 982 (2005).
http://dx.doi.org/10.1038/nmat1774
39.
39. T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
40.
40. T. Uemura, M. Yamagishi, J. Soeda, Y. Takatsuki, Y. Okada, Y. Nakazawa, and J. Takeya, Phys. Rev. B 85, 035313 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035313
41.
41. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, and A. F. Morpurgo, Adv. Mater. 24, 503 (2012).
http://dx.doi.org/10.1002/adma.201103960
42.
42. J. Cho, Y. Akiyama, T. Kakinuma, and T. Mori, AIP Advances 3, 102131 (2013).
http://dx.doi.org/10.1063/1.4828415
43.
43. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) pp. 99103.
44.
44. Y. Xu, T. Monari, K. Tsukagoshi, R. Gwoziecki, R. Coppard, M. Benwadin, J. Chroboczek, F. Balestra, and G. Ghibaudo, J. Appl. Phys. 110, 014510 (2011).
http://dx.doi.org/10.1063/1.3602997
45.
45. T. J. Emge, F. M. Wiygul, J. S. Chappell, A. N. Bloch, J. P. Ferraris, D. O. Cowan, and T. J. Kistenmacher, Mol. Cryst. Liq. Cryst. 87, 137 (1982).
http://dx.doi.org/10.1080/00268948208083778
46.
46. A. Brillante, I. Bilotti, R. G. D. Valle, E. Venuti, S. Milia, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, and L. W. Molemkamp, CrystEngComm 10, 1899 (2008).
http://dx.doi.org/10.1039/b810993a
47.
47. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) pp. 187196.
48.
48. J. Nakayama, E. Seki, and M. Hoshino, J. Chem. Soc. Perkin Trans. I 5, 468 (1978).
http://dx.doi.org/10.1039/p19780000468
49.
49. E. M. Engler, V. V. Patel, J. R. Andersen, R. R. Schumaker, and A. A. Fukushima, J. Am. Chem. Soc. 100, 3769 (1978).
http://dx.doi.org/10.1021/ja00480a019
50.
50. H. Wada, K. Shibata, Y. Bando, and T. Mori, J. Mater. Chem. 18, 4165 (2008).
http://dx.doi.org/10.1039/b808435a
51.
51. M.-H. Yoon, H. Yan, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 127, 10388 (2005).
http://dx.doi.org/10.1021/ja052488f
52.
52. R. Schumacher, P. Thomas, K. Weber, and W. Fuchs, Solid State Commun. 62, 15 (1987).
http://dx.doi.org/10.1016/0038-1098(87)90074-3
53.
53. P. Irsigler, D. Wagner, and D. J. Dunstan, J. Phys. C 16, 6605 (1983).
http://dx.doi.org/10.1088/0022-3719/16/34/010
54.
54. A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.618
55.
55. A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12244
56.
56. C. Kreller, S. Haas, C. Goldmann, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245115
57.
57. O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C. K. Chan, and A. Kahn, Phys. Rev. Lett. 95, 256405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.256405
58.
58. S. Yogev, R. Matsubara, M. Nakamura, U. Zschieschang, H. Klauk, and Y. Rosenwaks, Phys. Rev. Lett. 110, 036803 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.036803
59.
59. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater. 25, 1822 (2012).
http://dx.doi.org/10.1002/adma.201202790
60.
60. J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2002) p. 206.
61.
61. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
http://dx.doi.org/10.1149/1.2221149
62.
62. K. N. N. Unni, S. Dabos-Seihnon, and J.-M. Nunzi, J. Phys. D 38, 1148 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/008
63.
63. N. Kawasaki, Y. Ohta, Y. Kubozono, A. Konishi, and A. Fujiwara, Appl. Phys. Lett. 92, 163307 (2008).
http://dx.doi.org/10.1063/1.2908886
64.
64. T. Lindner, G. Paasch, and S. Scheinert, J. Mater. Sci. 19, 2014 (2004).
65.
65. S. Scheinert, K. P. Pernstich, B. Batlogg, and G. Paasch, J. Appl. Phys. 102, 104503 (2007).
http://dx.doi.org/10.1063/1.2803742
66.
66. H. Zhang and M. Matsumura, Mater. Res. Soc. Symp. Proc. 95, 463 (1987).
http://dx.doi.org/10.1557/PROC-95-463
67.
67. N. Lustig, J. Kanicki, R. Wisniff, and J. Griffith, Mater. Res. Soc. Symp. Proc. 118, 267 (1988).
http://dx.doi.org/10.1557/PROC-118-267
68.
68. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
69.
69. A. S. Mishchenko, H. Matsui, and T. Hasegawa, Phys. Rev. B 85, 085211 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085211
70.
70. H. Matsui, A. S. Mishchenko, and T. Hasegawa, Phys. Rev. Lett. 104, 056602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.056602
71.
71. K. P. Pemstich, D. Oberhoff, C. Goldmann, and B. Batlogg, Appl. Phys. Lett. 89, 213509 (2006).
http://dx.doi.org/10.1063/1.2396924
72.
72. S. Olthof, S. Singh, S. K. Mohaparta, S. Barlow, S. R. Marder, B. Kippelen, and A. Kahn, Appl. Phys. Lett. 101, 253303 (2012).
http://dx.doi.org/10.1063/1.4772551
73.
73. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863296
Loading
/content/aip/journal/adva/4/1/10.1063/1.4863296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4863296
2014-01-23
2014-09-19

Abstract

Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4863296.html;jsessionid=3go8bi3jkkfts.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4863296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Analysing organic transistors based on interface approximation
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863296
10.1063/1.4863296
SEARCH_EXPAND_ITEM