Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. M. Leger, Adv. Mater. 20 (4), 837841 (2008).
2. J. Leger, M. Berggren, and S. A. Carter, Iontronics : Ionic carriers in organic electronic materials and devices. (CRC Press, Boca Raton, 2011).
3. Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science 269 (5227), 10861088 (1995).
4. J. C. deMello, N. Tessler, S. C. Graham, and R. H. Friend, Physical Review B 57 (20), 1295112963 (1998).
5. D. A. Bernards, S. Flores-Torres, H. D. Abruna, and G. G. Malliaras, Science 313 (5792), 14161419 (2006).
6. R. J. Mortimer, A. L. Dyer, and J. R. Reynolds, Displays 27(1), 218 (2006).
7. H. D. Abruna, Y. Kiya, and J. C. Henderson, Physics Today 61(12), 4347 (2008).
8. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R. M. Owens, and G. G. Malliaras, Nat Commun 4 (2013).
9. E. Smela, MRS Bull. 33(3), 197204 (2008).
10. J. Rivnay, R. M. Owens, and G. G. Malliaras, Chemistry of Materials (2013).
11. J. Isaksson, P. Kjall, D. Nilsson, N. D. Robinson, M. Berggren, and A. Richter-Dahlfors, Nat. Mater. 6(9), 673679 (2007).
12. P. Lin and F. Yan, Adv. Mater. 24(1), 3451 (2012).
13. D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Hervé, S. Sanaur, C. Bernard, and G. G. Malliaras, Nat Commun 4, 1575 (2013).
14. A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, and K. Reuter, in PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, 2010), pp. 113166.
15. H. T. Nicolai, M. Kuik, G. A. H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P. W. M. Blom, Nat. Mater. 11(10), 882887 (2012).
16. A. J. Kronemeijer, E. H. Huisman, I. Katsouras, P. A. van Hal, T. C. T. Geuns, P. W. M. Blom, S. J. van der Molen, and D. M. de Leeuw, Physical Review Letters 105(15) (2010).
17. B. Smitha, S. Sridhar, and A. A. Khan, Journal of Membrane Science 259 (1–2), 1026 (2005).
18. J. O. M. Bockris, A. K. N. Reddy, and M. E. Gamboa-Aldeco, Modern electrochemistry, 2nd ed. (Plenum Press, New York, 1998).
19. M. A. Vorotyntsev, J. P. Badiali, and G. Inzelt, Journal of Electroanalytical Chemistry 472(1), 719 (1999).
20. R. Hass, J. Garcia-Canadas, and G. Garcia-Belmonte, Journal of Electroanalytical Chemistry 577(1), 99105 (2005).
21. K. Aoki, T. Aramoto, and Y. Hoshino, Journal of Electroanalytical Chemistry 340(1–2), 127135 (1992).
22. T. Johansson, N.-K. Persson, and O. Inganäs, Journal of the Electrochemical Society 151(4), E119E124 (2004).
23. X. Wang and E. Smela, The Journal of Physical Chemistry C 113(1), 369381 (2008).
24. E. Stavrinidou, P. Leleux, H. Rajaona, D. Khodagholy, J. Rivnay, M. Lindau, S. Sanaur, and G. G. Malliaras, Adv. Mater. 25 (32), 44884493 (2013).
25. E. Stavrinidou, P. Leleux, H. Rajaona, M. Fiocchi, S. Sanaur, and G. G. Malliaras, J. Appl. Phys. 113(24) (2013).
26. J. C. Lacroix, K. Fraoua, and P. C. Lacaze, Journal of Electroanalytical Chemistry 444(1), 8393 (1998).
27. F. Miomandre, M. N. Bussac, E. Vieil, and L. Zuppiroli, Chemical Physics 255(2–3), 291300 (2000).
28. X. Wang, B. Shapiro, and E. Smela, The Journal of Physical Chemistry C 113(1), 382401 (2008).

Data & Media loading...


Article metrics loading...



We monitor the process of dedoping in a planar junction between an electrolyte and a conducting polymer using electrochemical impedance spectroscopy performed during moving front measurements. The impedance spectra are consistent with an equivalent circuit of a time varying resistor in parallel with a capacitor. We show that the resistor corresponds to ion transport in the dedoped region of the film, and can be quantitatively described using ion density and drift mobility obtained from the moving front measurements. The capacitor, on the other hand, does not depend on time and is associated with charge separation at the moving front. This work offers a physical description of the impedance of conducting polymer/electrolyte interfaces based on materials parameters.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd