Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666669 (2004).
2. A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 15301534 (2009).
3. Junyan Zhang, Bin Zhang, Qunji Xue, and Zhou Wang, “Ultra-elastic recovery and low friction of amorphous carbon films produced by a dispersion of multilayer graphene,” Diamond and Related Materials 23(0), 59 (2012).
4. Z. Wang and J. Zhang, “Deposition of hard elastic hydrogenated fullerenelike carbon films,” Journal of Applied Physics 109(10), 1033034 (2011).
5. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Applied Physics Letters 95(7), 073107 (2009).
6. H. S. Skulason, H. V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, and T. Szkopek, “110 ghz measurement of large-area graphene integrated in low-loss microwave structures,” Applied Physics Letters 99(15), 153504 (2011).
7. Hao-Bin Zhang, Qing Yan, Wen-Ge Zheng, Zhixian He, and Zhong-Zhen Yu, “Tough graphene-polymer microcellular foams for electromagnetic interference shielding,” ACS Applied Materials & Interfaces 3(3), 918924 (2011).
8. Weikang Li, Anthony Dichiara, and Jinbo Bai, “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites,” Composites Science and Technology 74, 221227 (2013).
9. Xulin Yang, Zicheng Wang, Mingzhen Xu, Rui Zhao, and Xiaobo Liu, “Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet,” Materials & Design 44, 7480 (2013).
10. Cristina Ramirez, Filipe M. Figueiredo, Pilar Miranzo, P. Poza, and M. Isabel Osendi, “Graphene nanoplatelet/silicon nitride composites with high electrical conductivity,” Carbon 50(10), 36073615 (2012).
11. Q. Wang, C. Wang, Z. Wang, J. Zhang, and D. He, “Fullerene nanostructure-induced excellent mechanical properties in hydrogenated amorphous carbon,” Applied Physics Letters 91(14), 141902 (2007).
12. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” Journal of Applied Polymer Science 128(6), 42174223 (2012).
13. Caryn L. Heldt, Amy K. Sieloff, Joshua P. Merillat, Adrienne R. Minerick, Julia A. King, Warren F. Perger, Hiroyuki Fukushima, and Jeffri Narendra, “Stacked graphene nanoplatelet paper sensor for protein detection,” Sensors and Actuators B: Chemical 181, 9298 (2013).
14. Zhou Wang, ChengBing Wang, Qi Wang, and Junyan Zhang, “Electrochemical corrosion behaviors of a–C:H and a–C:NX:H films,” Sensors and Actuators B: Chemical 181, 9298 (2013).
15. James Loomis, Ben King, Tom Burkhead, Peng Xu, Nathan Bessler, Eugene Terentjev, and Balaji Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23(4), 045501 (2012).
16. Huang Wu and Lawrence T. Drzal, “Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties,” Carbon 50(3), 11351145 (2012).
17. Hongtao Zhang, Jinsong Zhang, and Hongyan Zhang, “Numerical predictions for radar absorbing silicon carbide foams using a finite integration technique with a perfect boundary approximation,” Smart Materials and Structures 15(3), 759766 (2006).
18. C. Basavaraja, Won Jung Kim, Young Do Kim, and Do Sung Huh, “Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films,” Materials Letters 65(19-20), 31203123 (2011).
19. Chao Wang, Xijiang Han, Ping Xu, Xiaolin Zhang, Yunchen Du, Surong Hu, Jingyu Wang, and Xiaohong Wang, “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material,” Applied Physics Letters 98(7), 072906 (2011).
20. Chao Wang, Xijiang Han, Ping Xu, Xiaolin Zhang, Yunchen Du, Surong Hu, Jingyu Wang, and Xiaohong Wang, “Response to “Comment on ‘The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”’ [Appl. Phys. Lett. 100, 046101 (2012)],” Applied Physics Letters 100(4), 046102 (2012).
21. Vivek K. Singh, Anuj Shukla, Manoj K. Patra, Lokesh Saini, Raj K. Jani, Sampat R. Vadera, and Narendra Kumar, “Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite,” Carbon 50(6), 22022208 (2012).
22. B. J. P. Adohi, D. Bychanok, B. Haidar, and C. Brosseau, “Microwave and mechanical properties of quartz/graphene–based polymer nanocomposites,” Applied Physics Letters 102(7), 072903 (2013).
23. Zhou Wang, Guodong Wei, and Guang–Lin Zhao, “Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites,” Applied Physics Letters 103(19), 183109 (2013).
24. Xin Bai, Yinghao Zhai, and Yong Zhang, “Green approach to prepare graphene-based composites with high microwave absorption capacity,” The Journal of Physical Chemistry C 115(23), 1167311677 (2011).
25. Jiajie Liang, Yan Wang, Yi Huang, Yanfeng Ma, Zunfeng Liu, Jinming Cai, Chendong Zhang, Hongjun Gao, and Yongsheng Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922925 (2009).
26. Le Chen, Chunhua Lu, Zhenggang Fang, Yi Lu, Yaru Ni, and Zhongzi Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Materials Letters 93, 308311 (2013).
27. P. A. Miles, W. B. Westphal, and A. Von Hippel, “Dielectric spectroscopy of ferromagnetic semiconductors,” Reviews of Modern Physics 29(3), 279307 (1957).
28. C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies,” Physical Review 83(1), 121124 (1951).
29. Shuang Zhang, Yinghao. Zhai, and Yong. Zhang, “Microwave-absorbing performance and mechanical properties of poly(vinyl chloride)/acrylonitrile-butadiene rubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide,” Journal of Applied Polymer Science 130, 345351 (2013).
30. T. N. Narayanan, Vijutha Sunny, M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, “Enhanced microwave absorption in nickel-filled multiwall carbon nanotubes in the s band,” Electrochemical and Solid-State Letters 12(4), K21K24 (2009).
31. Varij Panwar and R. M. Mehra, “Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites,” Polymer Engineering and Science 48(11), 21782187 (2008).
32. G. M. Tsangaris, G. C. Psarras, and N. Kouloumbi, “Electric modulus and interfacial polarization in composite polymeric systems,” Journal of Materials Science 33(8), 20272037 (1998).
33. Junhua Wu and Lingbing Kong, “High microwave permittivity of multiwalled carbon nanotube composites,” Applied Physics Letters 84(24), 4956 (2004).
34. Petra Pötschke, Sergej M. Dudkin, and Ingo Alig, “Dielectric spectroscopy on melt processed polycarbonate multiwalled carbon nanotube composites,” Polymer 44(17), 50235030 (2003).
35. Bao–Wen Li, Yang Shen, Zhen–Xing Yue, and Ce-Wen Nan, “Enhanced microwave absorption in nickel/hexagonal–ferrite/polymer composites,” Applied Physics Letters 89(13), 132504 (2006).
36. M. Itoh, M. Terada, F. Shogano, and K.–i. Machida, “Broadband electromagnetic wave absorbers prepared by grading magnetic powder density,” Journal of Applied Physics 108(6), 063911 (2010).

Data & Media loading...


Article metrics loading...



Graphene nanoplatelet (GNP)–epoxy composites were fabricated for the investigation of the dielectric permittivity and microwave absorption in a frequency range from 8 to 20 GHz. The intrinsically conductive GNP particles and polarized interfacial centers in the composites contribute to the microwave absorption. A minimum reflection loss of −14.5 dB at 18.9 GHz is observed for the GNP–epoxy composites with 15 wt. % GNP loading, which is mainly attributed to electric conductivity and the charge multipoles at the polarized interfaces in the GNP–epoxy composites.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd