1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/1/10.1063/1.4863687
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 15301534 (2009).
http://dx.doi.org/10.1126/science.1158877
3.
3. Junyan Zhang, Bin Zhang, Qunji Xue, and Zhou Wang, “Ultra-elastic recovery and low friction of amorphous carbon films produced by a dispersion of multilayer graphene,” Diamond and Related Materials 23(0), 59 (2012).
http://dx.doi.org/10.1016/j.diamond.2011.12.011
4.
4. Z. Wang and J. Zhang, “Deposition of hard elastic hydrogenated fullerenelike carbon films,” Journal of Applied Physics 109(10), 1033034 (2011).
http://dx.doi.org/10.1063/1.3590165
5.
5. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Applied Physics Letters 95(7), 073107 (2009).
http://dx.doi.org/10.1063/1.3202413
6.
6. H. S. Skulason, H. V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, and T. Szkopek, “110 ghz measurement of large-area graphene integrated in low-loss microwave structures,” Applied Physics Letters 99(15), 153504 (2011).
http://dx.doi.org/10.1063/1.3650710
7.
7. Hao-Bin Zhang, Qing Yan, Wen-Ge Zheng, Zhixian He, and Zhong-Zhen Yu, “Tough graphene-polymer microcellular foams for electromagnetic interference shielding,” ACS Applied Materials & Interfaces 3(3), 918924 (2011).
http://dx.doi.org/10.1021/am200021v
8.
8. Weikang Li, Anthony Dichiara, and Jinbo Bai, “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites,” Composites Science and Technology 74, 221227 (2013).
http://dx.doi.org/10.1016/j.compscitech.2012.11.015
9.
9. Xulin Yang, Zicheng Wang, Mingzhen Xu, Rui Zhao, and Xiaobo Liu, “Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet,” Materials & Design 44, 7480 (2013).
http://dx.doi.org/10.1016/j.matdes.2012.07.051
10.
10. Cristina Ramirez, Filipe M. Figueiredo, Pilar Miranzo, P. Poza, and M. Isabel Osendi, “Graphene nanoplatelet/silicon nitride composites with high electrical conductivity,” Carbon 50(10), 36073615 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.03.031
11.
11. Q. Wang, C. Wang, Z. Wang, J. Zhang, and D. He, “Fullerene nanostructure-induced excellent mechanical properties in hydrogenated amorphous carbon,” Applied Physics Letters 91(14), 141902 (2007).
http://dx.doi.org/10.1063/1.2794017
12.
12. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” Journal of Applied Polymer Science 128(6), 42174223 (2012).
http://dx.doi.org/10.1002/app.38645
13.
13. Caryn L. Heldt, Amy K. Sieloff, Joshua P. Merillat, Adrienne R. Minerick, Julia A. King, Warren F. Perger, Hiroyuki Fukushima, and Jeffri Narendra, “Stacked graphene nanoplatelet paper sensor for protein detection,” Sensors and Actuators B: Chemical 181, 9298 (2013).
http://dx.doi.org/10.1016/j.snb.2013.01.041
14.
14. Zhou Wang, ChengBing Wang, Qi Wang, and Junyan Zhang, “Electrochemical corrosion behaviors of a–C:H and a–C:NX:H films,” Sensors and Actuators B: Chemical 181, 9298 (2013).
15.
15. James Loomis, Ben King, Tom Burkhead, Peng Xu, Nathan Bessler, Eugene Terentjev, and Balaji Panchapakesan, “Graphene-nanoplatelet-based photomechanical actuators,” Nanotechnology 23(4), 045501 (2012).
http://dx.doi.org/10.1088/0957-4484/23/4/045501
16.
16. Huang Wu and Lawrence T. Drzal, “Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties,” Carbon 50(3), 11351145 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.10.026
17.
17. Hongtao Zhang, Jinsong Zhang, and Hongyan Zhang, “Numerical predictions for radar absorbing silicon carbide foams using a finite integration technique with a perfect boundary approximation,” Smart Materials and Structures 15(3), 759766 (2006).
http://dx.doi.org/10.1088/0964-1726/15/3/011
18.
18. C. Basavaraja, Won Jung Kim, Young Do Kim, and Do Sung Huh, “Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films,” Materials Letters 65(19-20), 31203123 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.06.110
19.
19. Chao Wang, Xijiang Han, Ping Xu, Xiaolin Zhang, Yunchen Du, Surong Hu, Jingyu Wang, and Xiaohong Wang, “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material,” Applied Physics Letters 98(7), 072906 (2011).
http://dx.doi.org/10.1063/1.3555436
20.
20. Chao Wang, Xijiang Han, Ping Xu, Xiaolin Zhang, Yunchen Du, Surong Hu, Jingyu Wang, and Xiaohong Wang, “Response to “Comment on ‘The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”’ [Appl. Phys. Lett. 100, 046101 (2012)],” Applied Physics Letters 100(4), 046102 (2012).
http://dx.doi.org/10.1063/1.3678193
21.
21. Vivek K. Singh, Anuj Shukla, Manoj K. Patra, Lokesh Saini, Raj K. Jani, Sampat R. Vadera, and Narendra Kumar, “Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite,” Carbon 50(6), 22022208 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.01.033
22.
22. B. J. P. Adohi, D. Bychanok, B. Haidar, and C. Brosseau, “Microwave and mechanical properties of quartz/graphene–based polymer nanocomposites,” Applied Physics Letters 102(7), 072903 (2013).
http://dx.doi.org/10.1063/1.4793411
23.
23. Zhou Wang, Guodong Wei, and Guang–Lin Zhao, “Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites,” Applied Physics Letters 103(19), 183109 (2013).
http://dx.doi.org/10.1063/1.4828356
24.
24. Xin Bai, Yinghao Zhai, and Yong Zhang, “Green approach to prepare graphene-based composites with high microwave absorption capacity,” The Journal of Physical Chemistry C 115(23), 1167311677 (2011).
http://dx.doi.org/10.1021/jp202475m
25.
25. Jiajie Liang, Yan Wang, Yi Huang, Yanfeng Ma, Zunfeng Liu, Jinming Cai, Chendong Zhang, Hongjun Gao, and Yongsheng Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922925 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.12.038
26.
26. Le Chen, Chunhua Lu, Zhenggang Fang, Yi Lu, Yaru Ni, and Zhongzi Xu, “Infrared emissivity and microwave absorption property of Sm0.5Sr0.5CoO3 perovskites decorated with carbon nanotubes,” Materials Letters 93, 308311 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.11.117
27.
27. P. A. Miles, W. B. Westphal, and A. Von Hippel, “Dielectric spectroscopy of ferromagnetic semiconductors,” Reviews of Modern Physics 29(3), 279307 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.279
28.
28. C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies,” Physical Review 83(1), 121124 (1951).
http://dx.doi.org/10.1103/PhysRev.83.121
29.
29. Shuang Zhang, Yinghao. Zhai, and Yong. Zhang, “Microwave-absorbing performance and mechanical properties of poly(vinyl chloride)/acrylonitrile-butadiene rubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide,” Journal of Applied Polymer Science 130, 345351 (2013).
http://dx.doi.org/10.1002/app.39063
30.
30. T. N. Narayanan, Vijutha Sunny, M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, “Enhanced microwave absorption in nickel-filled multiwall carbon nanotubes in the s band,” Electrochemical and Solid-State Letters 12(4), K21K24 (2009).
http://dx.doi.org/10.1149/1.3065992
31.
31. Varij Panwar and R. M. Mehra, “Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites,” Polymer Engineering and Science 48(11), 21782187 (2008).
http://dx.doi.org/10.1002/pen.21163
32.
32. G. M. Tsangaris, G. C. Psarras, and N. Kouloumbi, “Electric modulus and interfacial polarization in composite polymeric systems,” Journal of Materials Science 33(8), 20272037 (1998).
http://dx.doi.org/10.1023/A:1004398514901
33.
33. Junhua Wu and Lingbing Kong, “High microwave permittivity of multiwalled carbon nanotube composites,” Applied Physics Letters 84(24), 4956 (2004).
http://dx.doi.org/10.1063/1.1762693
34.
34. Petra Pötschke, Sergej M. Dudkin, and Ingo Alig, “Dielectric spectroscopy on melt processed polycarbonate multiwalled carbon nanotube composites,” Polymer 44(17), 50235030 (2003).
http://dx.doi.org/10.1016/S0032-3861(03)00451-8
35.
35. Bao–Wen Li, Yang Shen, Zhen–Xing Yue, and Ce-Wen Nan, “Enhanced microwave absorption in nickel/hexagonal–ferrite/polymer composites,” Applied Physics Letters 89(13), 132504 (2006).
http://dx.doi.org/10.1063/1.2357565
36.
36. M. Itoh, M. Terada, F. Shogano, and K.–i. Machida, “Broadband electromagnetic wave absorbers prepared by grading magnetic powder density,” Journal of Applied Physics 108(6), 063911 (2010).
http://dx.doi.org/10.1063/1.3487477
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863687
Loading
/content/aip/journal/adva/4/1/10.1063/1.4863687
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4863687
2014-01-31
2014-09-20

Abstract

Graphene nanoplatelet (GNP)–epoxy composites were fabricated for the investigation of the dielectric permittivity and microwave absorption in a frequency range from 8 to 20 GHz. The intrinsically conductive GNP particles and polarized interfacial centers in the composites contribute to the microwave absorption. A minimum reflection loss of −14.5 dB at 18.9 GHz is observed for the GNP–epoxy composites with 15 wt. % GNP loading, which is mainly attributed to electric conductivity and the charge multipoles at the polarized interfaces in the GNP–epoxy composites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4863687.html;jsessionid=bfst5030hb5pp.x-aip-live-03?itemId=/content/aip/journal/adva/4/1/10.1063/1.4863687&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863687
10.1063/1.4863687
SEARCH_EXPAND_ITEM