Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4863921
1.
1. J. D. Krauss and D. A. Fleisch, Electromagnetics with Applications, 5th ed. (McGraw-Hill, New York, 1999).
2.
2. Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, “Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding,” Adv. Mater. 25, 12961300 (2013).
http://dx.doi.org/10.1002/adma.201204196
3.
3. M. A. Kats, et al., “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
http://dx.doi.org/10.1063/1.4767646
4.
4. Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express. 20, 1221312221 (2012).
http://dx.doi.org/10.1364/OE.20.012213
5.
5. C. Hagglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 31353141 (2010).
http://dx.doi.org/10.1021/nl101929j
6.
6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
7.
7. H. Li, L. Hua Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
http://dx.doi.org/10.1063/1.3608246
8.
8. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
http://dx.doi.org/10.1063/1.3692178
9.
9. J. A. Rogers, et al., “Materials and mechanics for stretchable electronics,” Science 327, 1603 (2010).
http://dx.doi.org/10.1126/science.1182383
10.
10. M. Kaltenbrunner, et al., “Ultrathin and lightweight organic solar cells with high flexibility,” Nat. Commun. 3, 770 (2012).
http://dx.doi.org/10.1038/ncomms1772
11.
11. K. L. Chopraa, S. Majora, and D. K. Pandya, “Transparent conductors—A status review,” Thin Solid Films 102, 146 (1983).
http://dx.doi.org/10.1016/0040-6090(83)90256-0
12.
12. R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bulletin 25, 52 (2000).
http://dx.doi.org/10.1557/mrs2000.151
13.
13. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23, 14821513, (2011).
http://dx.doi.org/10.1002/adma.201003188
14.
14. T. Yamada, et al., “Application of low resistivity Ga-doped ZnO films to transparent electromagnetic interference shielding material,” Thin Solid Films 517, 1027 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.06.047
15.
15. G. Nimtz and U. Panten, “Broad band electromagnetic wave absorbers designed with nano-metal films,” Ann. Phys. 19, 5359 (2010).
http://dx.doi.org/10.1002/andp.200910389
16.
16. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188 (1954).
http://dx.doi.org/10.1364/JOSA.44.000188
17.
17. R. C. Hansen and W. T. Pawlewicz, “Effective conductivity and microwave reflectivity of thin metallic films,” IEEE Transactions on Microwave Theory and Techniques 30, 2064 (1982).
http://dx.doi.org/10.1109/TMTT.1982.1131380
18.
18. H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, “Microwave absorption on a thin film,” Appl. Phys. Lett. 82, 1353 (2003).
http://dx.doi.org/10.1063/1.1556969
19.
19. Y. Poo, R. X. Wu, X. Fan, and J. Q. Xiao, “Measurement of ac conductivity of gold nanofilms at microwave frequencies,” Rev. Sci. Instrum. 81, 064701 (2010). Therein, the conductivity measured by four-probe method is 5.60 × 106, 4.35 × 106, 2.84 × 106, and 2.17 × 106 S/m for the Au film of thickness 20, 18, 14, and 10 nm, respectively.
http://dx.doi.org/10.1063/1.3436450
20.
20. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 29442949 (2010).
http://dx.doi.org/10.1021/nl1011239
21.
21. Q. G. Du, et al., “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101, 181112 (2012).
http://dx.doi.org/10.1063/1.4765341
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4863921
Loading
/content/aip/journal/adva/4/1/10.1063/1.4863921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4863921
2014-01-29
2016-09-27

Abstract

We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4863921.html;jsessionid=53Wk9PoKEu7Ji_mM9d0f6Apj.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4863921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4863921&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4863921'
Right1,Right2,Right3,