Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4864037
1.
1. W. H. Meiklejphn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2. T. C. Schulthess and W. H. Butler, Journal of Magnetism and Magnetic Materials 198-199, 321 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)01103-2
3.
3. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
4.
4. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00421-8
5.
5. R. L. Stamps, J. Mag. Mag. Mat. 242-245, 139 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01154-4
6.
6. J. Nogués, V. L. J. Sorta, V. Skumryev, S. S. nach, J. M. noz, and M. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
7.
7. J. Nogués, L. Morellon, C. Leighton, M. R. Ibarra, and I. K. Schuller, Phys. Rev. B 61, R6455 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R6455
8.
8. C. Leighton, J. Nogués, B. Jönsson-Åkerman, and I. K. Schuller, Phys. Rev. Lett. 84, 3466 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3466
9.
9. Z. Li and S. Zhang, Phys. Rev. B 61, R14897 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R14897
10.
10. U. Nowak, K. D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Güntherodtntherodt, Phys. Rev. B 66, 014430 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014430
11.
11. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
12.
12. J. H. Seok, H. Y. Kwon, S. S. Hong, Y. Z. Wu, Z. Q. Qiu, and C. Won, Phys. Rev. B 80, 174407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174407
13.
13. B. Y. Wang, N. Y. Jih, W. C. Lin, C. H. Chuang, P. J. Hsu, C. W. Peng, Y. C. Yeh, Y. L. Chan, D. H. Wei, W. C. Chiang, and M.-T. Lin, Phys. Rev. B 83, 104417 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104417
14.
14. K. Baberschke and M. Farle, J. Appl. Phys. 81, 5038 (1997).
http://dx.doi.org/10.1063/1.364951
15.
15. M. Farle, B. Mirwald-Schulz, A. N. Anisimov, W. Platow, and K. Baberschke, Phys. Rev. B 55, 3708 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.3708
16.
16. R. Thamankar and F. Schumann, J. Magn. Magn. Mater. 272-276, 1196 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.464
17.
17. W. L. O’Brien, T. Droubay, and B. P. Tonner, Phys. Rev. B 54, 9297 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9297
18.
18. M. T. Lin, W. C. Lin, C. C. Kuo, and C. L. Chiu, Phys. Rev. B 62, 14268 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.14268
19.
19. C. C. Kuo, W. C. Lin, S. F. Chuang, and M.-T. Lin, Surf. Sci. 576, 76 (2005).
http://dx.doi.org/10.1016/j.susc.2004.12.003
20.
20. S. van Dijken, R. Vollmer, B. Poelsema, and J. Kirschner, J. Magn. Magn. Mater. 210, 316 (2000).
http://dx.doi.org/10.1016/S0304-8853(99)00622-8
21.
21. J. Lindner, P. Poulopoulos, R. Nunthel, E. Kosubek, H. Wende, and K. Baberschke, Surf. Sci. 523, L65 (2003).
http://dx.doi.org/10.1016/S0039-6028(02)02482-2
22.
22. J. Hong, R. Q. Wu, J. Lindner, E. Kosubek, and K. Baberschke, Phys. Rev. Lett. 92, 147202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.147202
23.
23. D. Sander, W. Pan, S. Ouazi, J. Kirschner, W. Meyer, M. Krause, S. Müller, L. Hammer, and K. Heinz, Phys. Rev. Lett. 93, 247203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.247203
24.
24. C. Sorg, N. Ponpandian, M. Bernien, K. Baberschke, H. Wende, and R. Q. Wu, Phys. Rev. B 73, 064409 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064409
25.
25. G. Bochi, C. A. Ballentine, H. E. Inglefield, C. V. Thompson, and R. C. O’Handley, Phys. Rev. B 53, R1729 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R1729
26.
26. W. Platow, U. Bovensiepen, P. Poulopoulos, M. Farle, K. Baberschke, L. Hammer, S. Walter, S. Müller, and K. Heinz, Phys. Rev. B 59, 12641 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12641
27.
27. W. C. Lin, B. Y. Wang, Y. W. Liao, K.-J. Song, and M.-T. Lin, Phys. Rev. B 71, 184413 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184413
28.
28. H. Xi, T. F. Ambrose, T. J. Klemmer, R. van de Veerdonk, J. K. Howard, and R. M. White, Phys. Rev. B 72, 024447 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024447
29.
29. C. C. Kuo, S. F. Chuang, W. Pan, W. C. Lin, and M.-T. Lin, J. Appl. Phys. 91, 7185 (2002).
http://dx.doi.org/10.1063/1.1456401
30.
30. W. Pan, Y.-T. Shih, and Z.-Z. Wu, J. Appl. Phys. 109, 07C112 (2011).
http://dx.doi.org/10.1063/1.3561765
31.
31. W. Pan, Y.-T. Shih, K.-L. Lee, W.-H. Shen, Z.-Z. Wu, and C.-C. Tsai, IEEE Trans. Magn. 47, 3883 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2157327
32.
32. W. Pan, Y.-T. Shih, K.-L. Lee, W.-H. Shen, C.-W. Tsai, D.-H. Wei, Y.-L. Chan, and H.-C. Chang, J. Appl. Phys. 111, 07C113 (2012).
http://dx.doi.org/10.1063/1.3676227
33.
33. F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.3962
34.
34. Y.-T. Shih, C.-Y. Su, and W. Pan, “Thickness and ordering temperature of surface Nio/Ni systems,” (2014), The temperature-dependent exchange bias behavior of surface oxidized n ML Ni/10 ML Co/Cu(001) is presented. It is concluded that the blocking temperature is near 200 K and the thickness of the surface NiO is at most 3 ML. (unpublished)
35.
35. J. Wollschläger, D. Erdös, H. Goldbach, R. Höpken, and K. Schröder, Thin Solid Films 400, 1 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01482-1
36.
36. J. Li, E. Arenholz, Y. Meng, A. Tan, J. Park, E. Jin, H. Son, J. Wu, C. A. Jenkins, A. Scholl, H. W. Zhao, C. Hwang, and Z. Q. Qiu, Phys. Rev. B 84, 012406 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.012406
37.
37. O. Hjortstam, K. Baberschke, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 55, 15026 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.15026
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4864037
Loading
/content/aip/journal/adva/4/1/10.1063/1.4864037
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4864037
2014-01-29
2016-10-01

Abstract

The magnetization of Co Ni /Cu(001) films before and after surface oxidization at 300 K is presented. Before the oxidization, the magnetization of the films in the thickness of 11 to 20 monolayers (ML) is in the in-plane direction at the temperature ranging from 140 K to 300 K. After the oxidization, the magnetizations of the films are in the in-plane direction at the temperature above 200 K, but transit to magnetization demolishment, in-plane-and-out-of-plane co-existence, spin reorientation transition, and coercivity enhancement, for films of 11, 12, 13, and above 15 ML, respectively. The blocking temperature of this film is also 200 K, which implies the transitions might be driven by the ordering of the antiferromagnetic surface oxides. The various magnetizations provide a model system for manipulating the magnetization direction, as well as a spin valve device by combination of the oxidized films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4864037.html;jsessionid=rAvoVA3ZzxMjA5O9B3qriBGa.x-aip-live-02?itemId=/content/aip/journal/adva/4/1/10.1063/1.4864037&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4864037&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4864037'
Right1,Right2,Right3,