Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/1/10.1063/1.4864057
1.
1. R. V. Krems, Phys. Rev. Lett. 96, 123202 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.123202
2.
2. Z. Li and R. V. Krems, Phys. Rev. A 75, 032709 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.032709
3.
3. D. Chakraborty, J. Hazra, and B. Deb, J. Phys. B.: At. Mol. Opt. Phys. 44, 095201 (2011).
http://dx.doi.org/10.1088/0953-4075/44/9/095201
4.
4. C. Haimberger, J. Kleinert, M. Bhattacharya, and N. P. Bigelow, Phys. Rev. A 70, 021402(R) (2004).
http://dx.doi.org/10.1103/PhysRevA.70.021402
5.
5. M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, Phys. Rev. Lett. 92, 133203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.133203
6.
6. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Péer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).
http://dx.doi.org/10.1126/science.1163861
7.
7. A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 92, 153001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.153001
8.
8. J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.203001
9.
9. S. D. Kraft, P. Staanum, J. Lange, L. Vogel, R. Wester, and M. Weidemüller, J. Phys. B.: At. Mol. Opt. Phys. 39, S993 (2006).
http://dx.doi.org/10.1088/0953-4075/39/19/S13
10.
10. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.133004
11.
11. J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, Chem. Rev. 112, 4890 (2012).
http://dx.doi.org/10.1021/cr300215h
12.
12. T. Takekoshi, M. Debatin, R. Rameshan, F. Ferlaino, R. Grimm, H. C. Nägerl, C. Ruth Le Sueur, J. M. Hutson, P. S. Julienne, S. Kotochigova, and E. Tiemann, Phys. Rev. A 85, 032506 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.032506
13.
13. C. P. Koch and M. Shapiro, Chem. Rev. 112, 4928 (2012).
http://dx.doi.org/10.1021/cr2003882
14.
14. R. González-Férez and C. P. Koch, Phys. Rev. A 86, 063420 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.063420
15.
15. K. von Meyenn, Z. Phys. 231, 154 (1970).
http://dx.doi.org/10.1007/BF01392506
16.
16. R. González-Férez and P. Schmelcher, Phys. Rev. A 69, 023402 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.023402
17.
17. R. González-Férez and P. Schmelcher, Phys. Rev. A 71, 033416 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.033416
18.
18. R. González-Férez, M. Weidemüller, and P. Schmelcher, Phys. Rev. A 76, 023402 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.023402
19.
19. R. González-Férez and P. Schmelcher, New. J. phys. 11, 055013 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055013
20.
20. R. González-Férez and P. Schmelcher, Phys. Chem. Chem. Phys. 13, 18810 (2011).
http://dx.doi.org/10.1039/c1cp21169b
21.
21. B. R. Johnson, J. Chem. Phys. 69, 4678 (1978).
http://dx.doi.org/10.1063/1.436421
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4864057 for the method of calculation of multichannel bound state. [Supplementary Material]
23.
23. R. G. Gordon, J. Chem. Phys. 51, 14 (1969).
http://dx.doi.org/10.1063/1.1671699
24.
24. R. Napolitano, J. Weiner, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 73, 1352 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1352
25.
25. J. L. Bohn and P. S. Julienne, Phys. Rev. A 54, R4637 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.R4637
26.
26. P. Stunnum, A. Pashov, H. Knockel, and E. Tiemann, Phys. Rev. A 75, 042513 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.042513
27.
27. M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005).
http://dx.doi.org/10.1063/1.1903944
28.
28. J. Deiglmayr, P. Pellegrini, A. Grochola, M. Repp, R. Côté, O. Dulieu, R. Wester, and M. Weidemüller, New. J. Phys. 11, 055034 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055034
29.
29. A. Grochola, A. Pashov, J. Deiglmayr, M. Repp, E. Tiemann, and R. Wester, J. Chem. Phys. 131, 054304 (2009).
http://dx.doi.org/10.1063/1.3180820
30.
30. N. Mabrouk, H. Berriche, H. Ben Ouada, and F. X. Gadea, J. Phys. Chem. A 114, 6657 (2010).
http://dx.doi.org/10.1021/jp101588v
31.
31. J. M. Hutson, M. Beyene, and M. L. González-Martínez, Phys. Rev. Lett. 103, 163201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.163201
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/1/10.1063/1.4864057
Loading
/content/aip/journal/adva/4/1/10.1063/1.4864057
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/1/10.1063/1.4864057
2014-01-29
2016-12-04

Abstract

We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al. , J. Phys. B44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/1/1.4864057.html;jsessionid=14qgx-u--uf8QA3JRGajZYmA.x-aip-live-06?itemId=/content/aip/journal/adva/4/1/10.1063/1.4864057&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/1/10.1063/1.4864057&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/1/10.1063/1.4864057'
Right1,Right2,Right3,