Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4897333
1.
1.Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Science 332, 1294 (2011).
http://dx.doi.org/10.1126/science.1204428
2.
2.F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
3.
3.M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).
http://dx.doi.org/10.1038/nature10067
4.
4.J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, Nat. Phys. 9, 284 (2013).
http://dx.doi.org/10.1038/nphys2576
5.
5.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
6.
6.W. Han, W. H. Wang, K. Pi, K. M. McCreary, W. Bao, Y. Li, F. Miao, C. N. Lau, and R. K. Kawakami, Phys. Rev. Lett. 102, 137205 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.137205
7.
7.Diederik Depla and S. Mahieu, Reactive Sputter Deposition (Springer, Berlin Heidelberg, 2008).
8.
8.H. Meng and J.-P. Wang, Appl. Phys. Lett. 88, 172506 (2006).
http://dx.doi.org/10.1063/1.2198797
9.
9.X. P. Qiu, Y. J. Shin, J. Niu, N. Kulothungasagaran, G. Kalon, C. Qiu, T. Yu, and H. Yang, AIP Adv. 2, 032121 (2012).
http://dx.doi.org/10.1063/1.4739783
10.
10.S. Chapman, T. G. Cowling, and C. Cercignani, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3 ed. (Cambridge University Press, 1991).
11.
11.C.-T. Chen, E. A. Casu, M. Gajek, and S. Raoux, Appl. Phys. Lett. 103 , 033109 (2013).
http://dx.doi.org/10.1063/1.4813911
12.
12.V.-V. Chi, K.-B. Zoukaa, Y. Hongxin, C. Johann, V. Jan, P. Stefania, B.-G. Pascale, C. Mairbek, R. Laurent, G. Valérie, D. Philippe, S. Violaine, and F. Olivier, N. J. Phys. 12, 103040 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103040
13.
13.M. J. Aus, C. Cheung, B. Szpunar, U. Erb, and J. Szpunar, J. Mater. Sci. Lett. 17, 1949 (1998).
http://dx.doi.org/10.1023/A:1006620812602
14.
14.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
15.
15.L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 473, 51 (2009).
16.
16.A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
17.
17.Z. Jing, Z. Guang-Yu, and S. Dong-Xia, Chin. Phys. B 22, 057701 (2013).
http://dx.doi.org/10.1088/1674-1056/22/1/010303
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4897333
Loading
/content/aip/journal/adva/4/10/10.1063/1.4897333
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4897333
2014-10-15
2016-09-27

Abstract

Growth of thin cobalt film with perpendicular magnetic anisotropy has been investigated on pristine graphene for spin logic and memory applications. By reduction of the kinetic energy of the sputtered atoms using indirect sputtered deposition, deposition induced defects in the graphene layer have been controlled. Cobalt film on graphene with perpendicular magnetic anisotropy has been developed. Raman spectroscopy of the graphene surface shows very little disorder induced in the graphene by the sputtering process. In addition, upon increasing the cobalt film thickness, the disorder density increases on the graphene and saturates for thicknesses of Co layers above 1 nm. The AFM image indicates a surface roughness of about 0.86 nm. In addition, the deposited film forms a granular structure with a grain size of about 40 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4897333.html;jsessionid=2zRJF6kDvi-B6q8mzZFzF9Xg.x-aip-live-02?itemId=/content/aip/journal/adva/4/10/10.1063/1.4897333&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4897333&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4897333'
Right1,Right2,Right3,