Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4897338
1.
1.S. Iwakami, O. Machida, M. Yanagihara, T. Ehara, N. Kaneko, H. Goto, and A. Iwabuchi, J. J. Appl. Phys. 46, L587 (2007).
http://dx.doi.org/10.1143/JJAP.46.L587
2.
2.N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, Member IEEE, Sadahiro Kato, and Seikoh Yoshida, Proceedings IEEE 98, 1151 (2010).
http://dx.doi.org/10.1109/JPROC.2009.2034397
3.
3.T. N. Bhat, S. B. Dolmanan, Y. Dikme, H. R. Tan, L. K. Bera, and S. Tripathy, J. Vac. Sci. Technol. B 32, 021206 (2014).
http://dx.doi.org/10.1116/1.4866429
4.
4. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F. A. Ponce, E. Kohn, and A. Krost, J. Cryst. Growth 248, 556 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01894-8
5.
5.T. Egawa, IEDM Tech. Dig. P. 613 (2012).
6.
6.J. J. Freedsman, T. Kubo, and T. Egawa, IEEE Trans. Electron Device 60, 3079 (2013).
http://dx.doi.org/10.1109/TED.2013.2276437
7.
7.K. Cheng, M. Leys, S. Degroote, M. Germain, and G. Borghs, Appl. Phys. Lett. 92, 192111 (2008).
http://dx.doi.org/10.1063/1.2928224
8.
8.H. Lahrèche, P. Vennehguès, O. Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, and P. Gibart, J. Cryst. Growth 217, 13 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00478-4
9.
9. Poblenz, P. Waltereit, S. Rajan, U. K. Mishra, J. S. Speck, P. Chin, I. Smorchkova, and B. Heying, J. Vac. Sci. Technol. B 23, 1562 (2005).
http://dx.doi.org/10.1116/1.1943443
10.
10.F. J. Xu, J. Xu, B. Shen, Z. L. Miao, S. Huang, L. Lu, Z. J. Yang, Z. X. Qin, and G. Y. Zhang, Thin Solid Films 517, 588 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.06.092
11.
11.Y. Zhang, I. P. Smorchkova, C. R. Elsass, S. Keller, J. P. Ibbetson, S. Denbaars, U. K. Mishra, and J. Singh, J. Appl. Phys. 87, 7981 (2000).
http://dx.doi.org/10.1063/1.373483
12.
12.S. Choi, E. Heller, D. Dorsey, R. Vetury, and S. Graham, J. Appl. Phys. 113, 093510 (2013).
http://dx.doi.org/10.1063/1.4794009
13.
13.H. F. Liu, S. B. Dolmanan, L. Zhang, S. J. Chua, D. Z. Chi, M. Heuken, and S. Tripathy, J. Appl. Phys. 113, 023510 (2013).
http://dx.doi.org/10.1063/1.4774288
14.
14.M. Barchuk, C. Röder, Y. Shashev, G. Lukin, M. Motylenko, J. Kortus, O. Pätzold, and D. Rafaja, J. Cryst. Growth 386, 1 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.09.041
15.
15.M. Azize and T. Palacios, J. Appl. Phys. 108, 023707 (2010).
http://dx.doi.org/10.1063/1.3463150
16.
16.H. Tokuda, T. Kojima, and M. Kuzuhara, Appl. Phys. Lett. 101, 082111 (2012).
http://dx.doi.org/10.1063/1.4748169
17.
17. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B 54(24), 17745 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17745
18.
18.F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang, and C. C. Yang, Semicond. Sci. Technol. 22(8), 896 (2007).
http://dx.doi.org/10.1088/0268-1242/22/8/012
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4897338
Loading
/content/aip/journal/adva/4/10/10.1063/1.4897338
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4897338
2014-10-03
2016-12-04

Abstract

The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4897338.html;jsessionid=hmwPeukUOvAQF4RUkBe2-zrv.x-aip-live-02?itemId=/content/aip/journal/adva/4/10/10.1063/1.4897338&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4897338&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4897338'
Right1,Right2,Right3,