Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. Green, “Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E 14, 6570 (2002).
2.G. Conibeer, M. Green, R. Corkish, Y. Cho, E. Cho, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654 (2006).
3.K. Chen, K. Chen, P. G. Han, H. C. Zou, Z. Ma, and X. F. Huang, “The size control of uniformnanocrystalline Si grains by constrained growth model,” Int. J. Mod. Phys. B19, 2751 (2005).
4.Eun-Chel Cho, M. A. Green, G. Conibeer, D. Song, Y. Hyun Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, Y. Huang, and Lap Van Dao, “Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells,” Adv. OptoElectron. 2007, 69578 (2007).
5.A. Madhavan, V. L. Dalal, and M. A. Noak, “Superlattice structures for nanocrystalline silicon solar cells,” IEEE Conference Proceedings 383 (2008).
6.P. Chaudhuri, A. Kole, and G. Haider, “Structural characterization of superlattice of microcrystalline silicon carbide layers for photovoltaic application,” J. Appl. Phys. 113, 064313 (2013).
7.X. J. Hao, E-C. Cho, C. Flynn, Y. S. Shen, S. C. Park, G. Conibeer, and M. A. Green, “Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells,” Solar Energy Materials & Solar Cells 93, 273 (2009).
8.C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
9.D. K. Basa, G. Ambrosone, and U. Coscia, “Microcrystalline to nanocrystalline silicon phase transition in hydrogenated silicon–carbon alloy films,” Nanotechnology 19, 415706 (2008).
10.Y. Kurokawa, S. Miyajima, A. Yamada, and M. Konagai, “Preparation of nanocrystalline silicon in amorphous silicon carbide matrix,” Jap. J. Appl. Phys. 45, L1064 (2006).
11.A. Kole and P. Chaudhuri, “Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases,” Thin Solid Films. 522, 45 (2012) doi:10.1016/j.tsf.2012.02.078.
12.A. Kole and P. Chaudhuri, “A study of the evolution of the silicon nanocrystallites in the amorphous silicon carbide under argon dilution of the source gases,” J. Nano- Electron. Phys. 3, 155 (2011).
13.A. Bhaduri, A. Kole, and P. Chaudhuri, “Nanocrystallites formation in a-SiC by low power plasma enhanced chemical vapour deposition,” Phys. Stat. Solidi C. 7, 774 (2010) DOI: 10.1002/pssc.200982837.
14.Y. Rui, S. Li, J. Xu, C. Song, X. Jiang, W. Li, K. Chen, Q. Wang, and Y. Zuo, “Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix,” J. Appl. Phys. 110, 064322 (2011).
15.M. Hartel, M. Kunle, P. Loper, S. Janz, and A. W. Bett, “Amorphous SixC1−x:H single layers before and after thermal annealing: Correlating optical and structura properties,” Solar Energy Materials & Solar Cells 94, 1942 (2010).
16.O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Appl. Phys. Lett. 73, 3214 (1998).
17.O. Nast, S. Brehm, S. Pritchard, A. G. Aberle, and S. R. Wenham, “Aluminium-induced crystallisation of silicon on glass for thin-film solar cells,” Solar Energy Materials & Solar Cells 65, 385 (2001).
18.S. Y. Yoon, S. J. Park, K. Ho Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films 383, 34 (2001).
19.P. Scherrer, Göttinger Nachrichten Gesell 2, 98 (1918).
20.X. L. Wu, G. G. Siu, S. Tong, X. N. Liu, F. Yan, S. S. Jiang, X. K. Zhang, and D. Feng, “Raman scattering of alternating nanocrystalline silicon/amorphous silicon multilayers,” Appl. Phys. Lett. 69, 523 (1996).
21.Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, and G. Y. Hu, “The structure and properties of nanosize crystalline silicon films,” J. Appl. Phys. 75, 797 (1994).
22.I. Solomon, M. P. Schmidt, C. Senemaud, and M. Driss Khodja, “Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy,” Phys. Rev. B 38(13), 263 (1988).
23.S. E. Hicks, A. G. Fitzgerald, S. H. Baker, and T. J. Dines, “The structural, chemical and compositional nature of amorphous silicon carbide films,” Philos. Mag. B 62, 193 (1990).
24.E. Gat, M. A. El Khakani, M. Chaker, A. Jean, S. Boily, H. Pépin, J. C. Kieffer, J. Durand, B. Cros, F. Rousseaux, and S. Gujrathi, “A study of the effect of composition on the microstructural evolution of a–SixC1−x: H PECVD films: IR absorption and XPS characterizations,” J. Materials Res. 7, 2478 (1992).
25.R. C. Lee, C. Rubin Aita, and N. C. Tran, “The air-exposed surface of sputter deposited silicon carbide studied by x-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A 9, 1351 (1991).
26.K. L. Smith and K. M. Black, “Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC,” J. Vac. Sci. Technol. A 2, 744 (1984).
27.W. K. Choi, F. L. Loo, C. H. Ling, F. C. Loh, and K. L. Tan, “Structural and electrical studies of radio frequency sputtered hydrogenated amorphous silicon carbide films,” J. Appl. Phys. 78, 7289 (1995).
28.M. A. El Khakani, M. Chaker, J. Jean, S. Boily, H. Pepin, J. C. Kieffer, and S. C. Gujrathi, “Effect of rapid thermal annealing on both the stress and the bonding states of a-SiC:H films,” J. Appl. Phys. 74, 2834 (1993).
29.W. K. Choi, T. Y. Ong, L. S. Tan, F. C. Loh, and K. T. Lan, “Infrared and x-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films,” J. Appl. Phys. 83, 4968 (1998).
30.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomber, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain and Perkin-Elmer (Eden Prairie, MN, 1992).
31.E. A. Davis, in Amorphous Semiconductors, edited by P.G. Le and J. Mott (Academic Press, New York, 1973), p. 450.
32.A. Kole and P. Chaudhuri, “Growth of silicon nanocrystallites in amorphous silicon carbide thin films by aluminum induced crystallization,” AIP Conf. Proc. 1536, 161 (2013); doi: 10.1063/1.4810150.
33.D. Han and K. Wang, “Photo- and electro-luminescence of a-SiH and mixed-phase alloys,” Solar Energy Materials and Solar Cells 78, 181233 (2003).
34.T. Shimizu-Iwayama, K. Fujita, S. Nakano, K. Saito, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 77797794 (1994).
35.A. M. Ali and S. Hasegawa, “Effect of hydrogen dilution on the growth of nanocrystalline silicon films at high temperature by using plasma-enhanced chemical vapor deposition,” Thin Solid Films 437, 6873 (2003).
36.S. Kohli, J. A. Theil, P. C. Dippo, K. M. Jones, M. M. Al-Jassim, R. A. Ahrenkiel, C. T. Rithner, and P. K. Dorhout, “Nanocrystal formation in annealed a-SiO0.17N0.07:H films,” Nanotechnology 18, 1831 (2004).
37.P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modelling the contribution of quantum confinement to luminescence from silicon nanoclusters,” J. Appl. Phys. 83, 3789 (1998).
38.T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Letts. 85, 5355 (2004).
39.Peter G. Hugger, J. David Cohen, Baojie Yan, Guozhen Yue, Jeffrey Yang, and Subhendu Guha, “Relationship of deep defects to oxygen and hydrogen content in nanocrystalline silicon photovoltaic materials,” Appl. Phys. Lett. 97, 252103 (2010).
40.H. Xu, C. Wen, H. Liu, Z. P. Li, and W. Z. Shen, “Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials,” J. Applied Physics 113, 093501 (2013).
41.C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “An investigation of the formation and growth of oxide embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites,” J. Phys. Chem. C 111, 6956 (2007).
42.H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of shydrogenated amorphous silicon,” Phys. Status Solidi B 100, 43 (1980).
43.A. Grill and D. A. Neumayer, “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization,” J. Appl. Phys. 94, 6697 (2003).
44.L. He, T. Inokuma, Y. Kurata, and S. Hasegawa, “Vibrational properties of SiO and Sill in amorphous SiOx:H films (0 <x <2.0) prepared by plasma-enhanced chemical vapor deposition,” J. Non-Cryst. Sol. 185, 249 (1995).
45.Douglas B. Mawhinney, John A. Glass, Jr., and John T. Yates Jr., “FTIR study of the oxidation of porous silicon,” J. Phys. Chem. B 101, 1202 (1997).
46.S. Y. Jing, H. J. Lee, and C. K. Choi, “Chemical bond structure on Si-O-C composite films with a low dielectric constant deposited by using inductively coupled plasma chemical vapor deposition,” J. Kor. Phys. Soc. 41, 769 (2002).
47.T. C. Chang, P. T. Liu, Y. S. Mor, S. M. Sze, M. S. Feng, F. M. Pan, B. T. Dai, and C. Y. Chang, “The novel improvement of low dielectric constant methylsilsesquioxane by N2O plasma treatment,” J. Electrochem. Soc. 146, 3802 (1999).
48.D. Song, E.-C. Cho, G. Conibeer, Y.-H. Cho, Y. Huang, S. Huang, C. Flynn, and M. A. Green, “Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering,” J. Vac. Sci. Technol. B 25, 1327 (2007).

Data & Media loading...


Article metrics loading...



A moderately low temperature (≤800 °C) thermal processing technique has been described for the growth of the silicon quantum dots (Si-QD) within microcrystalline silicon carbide (μc-SiC:H) dielectric thin films deposited by plasma enhanced chemical vapour deposition (PECVD) process. The nanocrystalline silicon grains (nc-Si) present in the as deposited films were initially enhanced by aluminium induced crystallization (AIC) method in vacuum at a temperature of = 525 °C. The samples were then stepwise annealed at different temperatures in air ambient. Analysis of the films by FTIR and XPS reveal a rearrangement of the μc-SiC:H network has taken place with a significant surface oxidation of the nc-Si domains upon annealing in air. The nc-Si grain size () as calculated from the XRD peak widths using Scherrer formula was found to decrease from 7 nm to 4 nm with increase in from 250 °C to 800 °C. A core shell like structure with the nc-Si as the core and the surface oxide layer as the shell can clearly describe the situation. The results indicate that with the increase of the annealing temperature in air the oxide shell layer becomes thicker and the nc-Si cores become smaller until their size reduced to the order of the Si-QDs. Quantum confinement effect due to the SiO covered nc-Si grains of size about 4 nm resulted in a photoluminescence peak due to the Si QDs with peak energy at 1.8 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd