Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Watanabe, T. Taniguchi, and H. Kanda, Nature Mater. 3, 404 (2004).
2.K. Watanabe and T. Tanniguchi, Phys. Rev. B 79, 193104 (2009).
3.R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 98, 211110 (2011).
4.B. Huang, H. X. Jiang, X. K. Cao, J. Y. Lin, and Su-Huai Wei, Phys. Rev. B 86, 155202 (2012).
5.X. K. Cao, B. Clubine, J. H. Edgar, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 103, 191106.
6.S. Majety, X. K. Cao, J. Li, R. Dahal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 100, 061121 (2012).
7.M. Chubarov, H. Pedersen, H. Högberg, J. Jensen, and A. Henry, Cryst. Growth Des. 12, 3215 (2012).
8.C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotechnology 5, 722 (2010).
9.A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
10.G. F. Knoll, Radiation Detection and Measurement, 4th ed. (John Wiley & Sons, Hoboken, NJ, 2010).
11.O. Osberghaus, Zeitschrift fuer Physik 128, 366 (1950).
12.J. Li, R. Dahal, S. Majety, J. Y. Lin, and H. X. Jiang, Nucl. Instr. Meth. Phys. Res. A 654, 417 (2011).
13.T. C. Doan, S. Majety, S. Grenadier, J. Li, J. Y. Lin, and H. X. Jiang, Nucl. Instr. Meth. Phys. Res. A 748, 84 (2014).
14.S. Nakamura, G. Fasol, and S. J. Pearton, The Blue Laser Diode: The Complete Story (Springer, New York, 2000).
15.H. X. Jiang and J. Y. Lin, Semicon. Sci. Technol. 29, 084003 (2014).
16.S. Majety, T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, AIP Advances 3, 122116 (2013).
17.L. J. Van der Pauw, Philips Research Reports 13, 1 (1958).
18.O. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Speck, Appl. Phys. Lett. 93, 242108 (2008).
19.K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 222108 (2005).
20.N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 89, 092107 (2006).
21.R. Geick and C. H. Perry, Phys. Rev. 146, 543 (1966).
22.L. K. Gallos, A. N. Anagnostopoulos, and P. Argyrakis, Phys. Rev. B 50, 14643 (1994).
23.R. Fivaz and E. Mooser, Phys. Rev. 136, A833 (1964).
24.R. C. Fivaz, Nuovo Cimento 63B, 10 (1969).
25.Optical and Electrical Properties, edited by P. L. Lee (D. Reidel, Boston, 1976).
26.J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).
27.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
28.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

Data & Media loading...


Article metrics loading...



Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV), hexagonal boron nitride (BN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, BN is the least studied and understood. The study of the electrical transport properties of BN is of utmost importance with a view to realizing practical device applications. Wafer-scale BN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped BN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in BN can be described by the form of μ ∝ (T/T)−α with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phononscattering. This behavior is a direct consequence of the fact that BN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd