Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4898642
1.
1.D. P. Divincenzo, “Quantum computation,” Science 270, 255 (1995).
http://dx.doi.org/10.1126/science.270.5234.255
2.
2.A. Barenco, D. Deutsch, A. Ekert, and R. Joza, Phys. Rev. Lett. 74, 4083 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4083
3.
3.O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2513
4.
4.R. M. Stevenson, R. M. Thompson, A. J. Shields, I. Farrer, B. E. Kardynal, D. A. Ritchie, and M. Pepper, Phys. Rev. B 66 081302(R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.081302
5.
5.C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, Phys. Rev. B 66, 045308 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.045308
6.
6.R. M. Stevenson, R. J. Young, P. See, D. G. Gevaux, K. Cooper, P. Atkinson, I. Farrer, D. A. Ritchie, and A. J. Shields, Phys. Rev. B 73, 033306 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.033306
7.
7.R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, Phys. Rev. B 72, 113305 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.113305
8.
8.R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, New. J. Phys. 8, 29 (2006).
http://dx.doi.org/10.1088/1367-2630/8/2/029
9.
9.T. Kuroda, T. Mano, N. Ha, H. Nakajima, H. Kumano, B. Urbaszek, M. Jo, M. Abbarchi, Y. Sakuma, K. Sakoda, I. Suemune, X. Marie, and T. Amand, Phys. Rev. B 88 041306(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.041306
10.
10.H. Gotoh, H. Sanada, H. Yamaguchi, and T. Sogawa, Jpn. J. Appl. Phys. 52, 120202 (2013).
http://dx.doi.org/10.7567/JJAP.52.120202
11.
11.E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, Nature 420, 762 (2002).
http://dx.doi.org/10.1038/420762a
12.
12.T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, Jpn. J. Appl. Phys. 44, L620 (2005).
http://dx.doi.org/10.1143/JJAP.44.L620
13.
13.L. –M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
http://dx.doi.org/10.1038/35106500
14.
14.N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.33
15.
15.T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.133603
16.
16.H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, Phys. Rev. Lett. 87, 246401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.246401
17.
17.H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, Phys. Rev. Lett. 88, 087401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.087401
18.
18.D. Bimberg, N. Kirxtaedler, N. N. Ledentsov, Zh. I. Alferov, P. S. Kopev, and V. M. Ustinov, IEEE Sel. Top. Quantum Electron. 3, 196 (1997).
http://dx.doi.org/10.1109/2944.605656
19.
19.M. Wesseli, C. Ruppert, S. Trumm, H. J. Krenner, J. J. Finley, and M. Betz, Appl. Phys. Lett. 88, 203110 (2006).
http://dx.doi.org/10.1063/1.2205722
20.
20.P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.157401
21.
21.J. Ishi-Hayase, K. Akahane, N. Yamamoto, M. Sasaki, M. Kujiraoka, and K. Ema, Appl. Phys. Lett. 91, 103111 (2007).
http://dx.doi.org/10.1063/1.2780120
22.
22.S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, Appl. Phys. Lett. 92, 041113 (2008).
http://dx.doi.org/10.1063/1.2840160
23.
23.J Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, J. Phys., Condens. Matter 16, S3727 (2004).
http://dx.doi.org/10.1088/0953-8984/16/35/014
24.
24.H. Gotoh, S. W. Chang, S. L. Chuang, H. Okamoto, and Y. Shibata, Jpn. J. Appl. Phys. 46, 2369 (2007).
http://dx.doi.org/10.1143/JJAP.46.2369
25.
25.E. T. Batteh, Jun Cheng, Gang Chen, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park, Appl. Phys. Lett. 84, 1928 (2004).
http://dx.doi.org/10.1063/1.1667280
26.
26.E. T. Batteh, Jun Cheng, Gang Chen, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park, Phys. Rev. B71, 155327 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155327
27.
27.M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, Revised Edition (Academic Press, Orlando Florida, 1988).
28.
28.H. Gotoh, H. Kamada, T. Saitoh, H. Ando, and J. Temmyo, Phys. Rev. B69(15), 155328 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155328
29.
29.H. Gotoh, H. Kamada, T. Saitoh, H. Ando, and J. Temmyo, Phys. Rev. B71(19), 195334 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195334
30.
30.H. Gotoh, H. Kamada, T. Saitoh, H. Ando, and J. Temmyo, Appl. Phys. Lett. 87, 102101 (2005).
http://dx.doi.org/10.1063/1.2035327
31.
31.D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3005
32.
32.K. Brunner, G. Abstreiter, G. Bohm, G. Trankle, and G. Weimann, Phys. Rev. Lett. 73, 1138 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1138
33.
33.K. J. Ahn, J. Forstner, and A. Knorr, Phys. Rev. B71, 153309 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.153309
34.
34.M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
35.
35.U. Fano, Phys. Rev. 124, 1866 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1866
36.
36.S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1033
37.
37.A. Imamoglu, Phys. Rev. A40, 2835 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.2835
38.
38.Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, Phys. Rev. Lett. 82, 4114 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4114
39.
39.Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
http://dx.doi.org/10.1063/1.92959
40.
40.Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, Phys. Rev. B72, 035306 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035306
41.
41.B. Patton, U. Woggon, and W. Langbein, Phys. Rev. Lett. 95, 266401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266401
42.
42.P. Meystre and M. Sargent III, Elements of Quantum Optics, Third Edition (Springer-Verlag, Berlin Heidelberg New York, 1999).
43.
43.B. A. Capron and M. Sargent III, Phys. Rev. A34, 3034 (1986).
44.
44.B. A. Capron and M. Sargent III, Phys. Rev. A34, 3051 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.3051
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4898642
Loading
/content/aip/journal/adva/4/10/10.1063/1.4898642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4898642
2014-10-14
2016-12-09

Abstract

Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4898642.html;jsessionid=wwQ-I5GKvNpLR04l7qUNYnP8.x-aip-live-02?itemId=/content/aip/journal/adva/4/10/10.1063/1.4898642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4898642&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4898642'
Right1,Right2,Right3,