Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4898643
1.
1.L. Z. Pei and Z. Y. Cai, Recent Pat. Nanotechnol. 6, 44 (2012).
http://dx.doi.org/10.2174/187221012798109291
2.
2.D. D. Vaughn and R. E. Schaak, Chem. Soc. Rev. 42, 2861 (2013).
http://dx.doi.org/10.1039/c2cs35364d
3.
3.S. K. Ray, S. Maikap, W. Banerjee, and S. Das, J. Phys. D. Appl. Phys. 46, 153001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/15/153001
4.
4.N. Shirahata, D. Hirakawa, Y. Masuda, and Y. Sakka, Langmuir 29, 7401 (2012).
http://dx.doi.org/10.1021/la303482s
5.
5.G. S. Armatas and M. G. Kanatzidis, Nano Lett. 10, 3330 (2010).
http://dx.doi.org/10.1021/nl101004q
6.
6.S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 58, 7921 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7921
7.
7.Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991).
http://dx.doi.org/10.1063/1.105773
8.
8.M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).
http://dx.doi.org/10.1021/nl071486l
9.
9.A. P. Alivisatos, 3654, 13226 (1996).
10.
10.D. Ruddy, J. Johnson, E. Smith, and N. Neale, ACS Nano 4, 7459 (2010).
http://dx.doi.org/10.1021/nn102728u
11.
11.N. Shirahata, J. Solid State Chem. 1 (2013).
12.
12.J. Liu, C. Liang, Z. Tian, S. Zhang, and G. Shao, Sci. Rep. 3, 1741 (2013).
http://dx.doi.org/10.1038/srep01741
13.
13.L. M. Wheeler, L. M. Levij, and U. R. Kortshagen, J. Phys. Chem. Lett. 4, 3392 (2013).
http://dx.doi.org/10.1021/jz401576b
14.
14.E. Muthuswamy and A. Iskandar, Chem. … (2012).
15.
15.E. Garralaga Rojas, H. Plagwitz, B. Terheiden, J. Hensen, C. Baur, G. La Roche, G. F. X. Strobl, and R. Brendel, J. Electrochem. Soc. 156, D310 (2009).
http://dx.doi.org/10.1149/1.3147271
16.
16.C. Fang, H. Föll, and J. Carstensen, J. Electroanal. Chem. 589, 259 (2006).
http://dx.doi.org/10.1016/j.jelechem.2006.02.021
17.
17.Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, 89, 457 (2000).
18.
18.Y. Kuo, Y. Lee, Y. Ge, S. Ren, and J. Roth, Nature 437, 1334 (2005).
http://dx.doi.org/10.1038/nature04204
19.
19.C. Fang, H. Föll, and J. Carstensen, Nano Lett. 6, 1578 (2006).
http://dx.doi.org/10.1021/nl061060r
20.
20.X. Chen, M. H. Kim, X. Zhang, C. Larson, D. Yu, A. M. Wodtke, and M. Moskovits, J. Phys. Chem. C 112, 13797 (2008).
http://dx.doi.org/10.1021/jp805498q
21.
21.I. a Goldthorpe, A. F. Marshall, and P. C. McIntyre, Nano Lett. 8, 4081 (2008).
http://dx.doi.org/10.1021/nl802408y
22.
22.J. Wilcoxon, P. Provencio, and G. Samara, Phys. Rev. B 64, 1 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035417
23.
23.M. Sailor and E. Lee, Adv. Mater. 0358, 783 (1997).
http://dx.doi.org/10.1002/adma.19970091004
24.
24.G. S. Armatas and M. G. Kanatzidis, Adv. Mater. 20, 546 (2008).
http://dx.doi.org/10.1002/adma.200701751
25.
25.G. S. Armatas and M. G. Kanatzidis, Nature 441, 1122 (2006).
http://dx.doi.org/10.1038/nature04833
26.
26.G. S. Armatas and M. G. Kanatzidis, Science 313, 817 (2006).
http://dx.doi.org/10.1126/science.1130101
27.
27.G. Kartopu, a. V. Sapelkin, V. a. Karavanskii, U. Serincan, and R. Turan, J. Appl. Phys. 103, 113518 (2008).
http://dx.doi.org/10.1063/1.2924417
28.
28.H. C. Choi and J. M. Buriak, Chem. Commun. 1669 (2000).
http://dx.doi.org/10.1039/b004011h
29.
29.S.-S. Chang and R. Hummel, J. Lumin. 86, 33 (2000).
http://dx.doi.org/10.1016/S0022-2313(99)00179-9
30.
30.S. Miyazaki, K. Sakamoto, K. Shiba, and M. Hirose, Thin Solid Films 255, 99 (1995).
http://dx.doi.org/10.1016/0040-6090(94)05630-V
31.
31.R. Boukherroub and S. Szunerits, Wet Chemical Approaches for Chemical Functionalization of Semiconductor Nanostructures (2009).
32.
32.a. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).
http://dx.doi.org/10.1063/1.366536
33.
33.V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).
http://dx.doi.org/10.1063/1.104512
34.
34.A. Cullis and L. Canham, Nature 353 (1991).
http://dx.doi.org/10.1038/353335a0
35.
35.L. Canham, Appl. Phys. Lett. 57, 1046 (1990).
http://dx.doi.org/10.1063/1.103561
36.
36.J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).
http://dx.doi.org/10.1038/nmat2398
37.
37.M. Stutzmannc, K. V Josepovitsd, and M. Rosenbauerb, 255, 282 (1995).
38.
38.E. T. H. Sargent and S. Member, 14, 1223 (2008).
39.
39.I. J. Kramer and E. H. Sargent, 8506 (2011).
40.
40.S. Tutashkonko, a. Boucherif, T. Nychyporuk, a. Kaminski-Cachopo, R. Arès, M. Lemiti, and V. Aimez, Electrochim. Acta 88, 256 (2013).
http://dx.doi.org/10.1016/j.electacta.2012.10.031
41.
41.A. Boucherif, G. Beaudin, V. Aimez, and R. Arès, Appl. Phys. Lett. 102, 011915 (2013).
http://dx.doi.org/10.1063/1.4775357
42.
42.N. V. P. Gloeilampenfabrieken, J. Electrochem. Soc. 109, 33 (1962).
http://dx.doi.org/10.1149/1.2425321
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4898643
Loading
/content/aip/journal/adva/4/10/10.1063/1.4898643
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4898643
2014-10-14
2016-12-04

Abstract

Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4898643.html;jsessionid=pTC3m5ORXYvX0r2sLX85vmsT.x-aip-live-02?itemId=/content/aip/journal/adva/4/10/10.1063/1.4898643&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4898643&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4898643'
Right1,Right2,Right3,