Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. E. Alexandrov and M. L. Hitchman, Chem. Vap. Deposition. 11(11-12), 457 (2005).
2.M. Moravej and R. F. Hicks, Chem. Vap. Deposition. 11(11-12), 469 (2005).
3.J. R. Roth, Industrial Plasma Engineering: Volume 2. Applications to Nonthermal Plasma Processing (Institute of Physics Publishing, Bristol and Philadelphia, 2001), p. 660.
4.U. Kogelschatz, Plasma Phys. Control. Fusion. 46, B63 (2004).
5.S. E. Alexandrov, N. McSporran, and M. L. Hitchman, Chem. Vap. Deposition. 11(11-12), 481 (2005).
6.M. J. Davis, M. Tsanos, J. Lewis, D. W. Sheel, and M. E. Pemble, in Proceedings of Chemical Vapor Deposition XVI (CVD VXI) and EUROCVD 14, edited by M. Allendorf, F. Maury, and F. Teyssandier (The Electrochemical Society, Inc, Pennington, NJ, USA, 2003), Vol. PV 2003-08, pp. 668675.
7.A. M. Ladwig, R. D. Koch, E. G. Wenski, and R. F. Hicks, Diamond and Related Materials. 18(9), 1129 (2009).
8.G. R. Nowling, S. E. Babayan, V. Jankovic, and R. F. Hicks, Plasma Sources Sci. Technol. 11, 97 (2002).
9.M. D. Barankin, Y. Creyghton, and A. Schmidt-Ott, J. Nanopart. Res. 8(3-4), 511 (2006).
10.C. Chen, H. Bai, H. M. Chein, and T. M. Chen, Aerosol Science and Technology. 41(11), 1018 (2007).
11.S. Alexandrov, I. Kretusheva, and M. Mishin, ECS Trans. 25(8), 943 (2009).
12.T. Nozaki, K. Ohnishi, K. Okazaki, and U. Kortshagen, Carbon 45, 364 (2007).
13.S. Kyung, Y. Lee, C. Kim, J. Lee, and G. Yeom, Thin Solid Films. 506-507, 268 (2006).
14.M. W. Li, Z. Hu, X. Wang, Q. Wu, and Y. Chen, J. of Mat. Sci. Let. 22, 1223 (2003).
15.M. Miettinen, M Johansson, S. Suvanto, J. Riikonen, U. Tapper, T. T. Pakkanen, V.-P. Lehto, J. Jokiniemi, and A. Lähde, J. Nanopart. Res. 13, 4631 (2011).
16.H. Lei, Y. Tang, J. Li, J. Luo, and J. Zhang, Appl. Phys. Lett. 91, 113119 (2009).
17.S. E. Alexandrov, I. V. Kretusheva, M. V. Mishin, and G. M. Yasenovets, J. Nanosci. Nanotechnol. 11(9), 7969 (2011).
18.M. V. Mishin, S. E. Alexandrov, I. V. Kretysheva, and I. K. Boricheva, Nauchno-tekhnicheskie vedomosti SPbGPU . 159(4), 105 (2012).
19.J. Park and W. Lu, Appl. Phys. Lett. 93, 243109 (2008).
20.T. Nitter, Plasma Sources Sci. Technol. 5, 93 (1996).
21.A. Michau, G. Lombardi, L. C. Delacqua, M. Redolfi, C. Arnas, X. Bonnin, and K. Hassouni, Plasma Phys. Control. Fusion. 52, 124014 (2010).
22.V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Physics Uspekhi 47(5), 447 (2004).
23.P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics Publishing Ltd, Bristol, 2002), p. 450.
24.Zh. A. Moldabekov, T. S. Ramazanov, and K. N. Dzhumagulova, AIP Conf. Proc. 1397, 237 (2011).
25.B. M. Annaratone, T. Antonova, C. Arnas, Y. Elskens, and G. Morfill, AIP Conf. Proc. 1041, 91 (2008).
26.V. Vyas and M. J. Kushner, J. Appl. Phys. 97, 043303 (2005).
27.N. Y. Babaeva and M. J. Kushner, J. Plasma Sources Sci. Technol. 23, 015007 (2014).
28.K. McKay, J.-S. Oh, J. L. Walsh, and J. W. Bradley, J. Phys. D: Appl. Phys. 46, 464018 (2013).
29.K. McKay, J. L. Walsh, and J. W. Bradley, J. Plasma Sources Sci. Technol. 22, 035005 (2013).
30.A. Yehia, J. Appl. Phys. 101, 023306 (2007).
31.M. Meziane, O. Eichwald, J. P. Sarrette, O. Ducasse, M. Yousfi, and F. Marchal, J. Appl. Phys. 113, 153302 (2013).
32.D. Dubois, N. Merbahi, O. Eichwald, M. Yousfi, and M. Benhenni, J. Appl. Phys. 101, 053304 (2007).
33.E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, M. J. Pinheiro, C. M. Ferreira, and B. Gordiets, J. Appl. Phys. 108, 123305 (2010).
34.M. Nikolic, S. Popovic, L. Vuskovic, G. C. Herring, and R. J. Exton, J. Appl. Phys. 110, 113304 (2011).
35.B. Zhang, Q. Wang, G. Zhang, and S. Liao, J. Appl. Phys. 115, 043302 (2014).
36.M. Bowes and J. W. Bradley, J. Phys. D: Appl. Phys. 47, 265202 (2014).
37.I. Peresy and M. J. Kushnerz, J. Plasma Sources Sci. Technol. 5, 499 (1996).
38.B. Liebig and J. W. Bradley, J. Plasma Sources Sci. Technol. 22, 045020 (2013).
39.C. Regnier, J. Desmaison, P. Tristantt, and D. Merle, J. Phys. IV France 5 C5-621 (1995).
40.I. M. Cohen, Phys. Fluids. 6(10), 1492 (1963).
41.L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974), p. 669.
42.B. M. Smirnov, Physics of Weakly Ionized Gas (Nayka, Moscow, 1895), p. 424.
43.S. A. Maiorov, Plasma Physics Reports 35(9), 802 (2009).
44.Yu. P. Raiser, Gas Discharge Physics (Intellekt, Moscow, 2009), p. 734.
45.B. N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1980), p. 432.
46.V. I. Davidenko, A. A. Ivanov, and G. Vaisen, Experimental Methods of Plasma Diagnostics (Novosibirsk State University, Novosibirsk, 1999), p. 148.
47.D. Korzec, M. R. Talukder, and M. Kando, Sci. Technol. Adv. Mater. 2(3-4), 595 (2001).
48.M. R. Talukder, D. Korzec, and M. Kando, J. Appl. Phys. 91, 9529 (2002).
49.A. K. Srivastava, M. K. Garg, K. S. G. Prasad, V. Kumar, M. B. Chowdhuri, and R. Prakash, IEEE Transactions on Plasma Science 35(4), 1135 (2007).
50.Y. M. Kagan and V. I. Perel, Physics-Uspekhi. 81, 411 (1963).
51.H. Massey, Negative Ions, 3rd ed. (Cambridge University Press, Cambridge, New York [etc., 1976), p. 741.
52.A. Forrester, Large Ion Beams: Fundamentals of Generation And Propagation (Wiley, New York, 1988), p. 325.
53.C. D. Child, “Discharge from Hot CaO,” Phys. Rev. 32, 492 (1911).
54.I. Langmuir, “Potential distribution and thermoionic currents between parallel plane electrode; effect of space-charge and initial velocities ion,” Phys. Rev. 21, 419 (1923).
55.T. C. Fry, “The Thermionic Current between Parallel Plane Electrodes; Velocities of Emission Distributed according to Maxwell’s Law,” Phys. Rev. 17 , p. 441 (1921).

Data & Media loading...


Article metrics loading...



This paper presents the results from an experimental study of the ion flux characteristics behind the remote plasma zone in a vertical tube reaction chamber for atmospheric pressure plasma enhanced chemical vapor deposition. Capacitively coupled radio frequency plasma was generated in pure He and gas mixtures: He–Ar, He–O, He–TEOS. We previously used the reaction system He–TEOS for the synthesis of self-assembled structures of silicon dioxide nanoparticles. It is likely that the electrical parameters of the area, where nanoparticles have been transported from the synthesis zone to the substrate, play a significant role in the self-organization processes both in the vapor phase and on the substrate surface. The results from the spatial distribution of the electrical potential and ion concentration in the discharge downstream area measured by means of the external probe of original design and the special data processing method are demonstrated in this work. Positive and negatives ions with maximum concentrations of 106–107 cm−3 have been found at 10–80 mm distance behind the plasma zone. On the basis of the revealed distributions for different gas mixtures, the physical model of the observed phenomena is proposed. The model illustrates the capability of the virtual ion emitter formation behind the discharge gap and the presence of an extremum of the electrical potential at the distance of approximately 10−2–10−1 mm from the grounded electrode.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd