Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4899044
1.
1.J. J. M. Halls, C. A. Walsh, N. Greenham, E. A. Marseglia, R. Friend, S. C. Moratti, and A. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376, 498500 (1995).
http://dx.doi.org/10.1038/376498a0
2.
2.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 17891791 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3.M. P. Ramuz, M. Vosgueritchian, P. Wei, C. Wang, Y. Gao, Y. Wu, Y. Chen, and Z. Bao, “Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells,” ACS Nano 6, 1038410395 (2012).
http://dx.doi.org/10.1021/nn304410w
4.
4.M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Applied Physics Letters 88, 233506 (2006).
http://dx.doi.org/10.1063/1.2209887
5.
5.S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: Extremely high dc to optical conductivity ratios,” ACS Nano 3, 17671774 (2009).
http://dx.doi.org/10.1021/nn900348c
6.
6.J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Letters 12, 31383144 (2012).
http://dx.doi.org/10.1021/nl301045a
7.
7.H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nature Nanotechnology (2013).
http://dx.doi.org/10.1038/nnano.2013.84
8.
8.D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, “Efficient organic solar cells with solution-processed silver nanowire electrodes,” Adv. Mater. 23, 43714375 (2011).
http://dx.doi.org/10.1002/adma.201100871
9.
9.J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Applied Physics Letters 96, 203301 (2010).
http://dx.doi.org/10.1063/1.3394679
10.
10.J. Huang, X. Wang, Y. Kim, A. J. deMello, D. D. C. Bradley, and J. C. deMello, “High efficiency flexible ito-free polymer/fullerene photodiodes,” Physical Chemistry Chemical Physics 8, 39043908 (2006).
http://dx.doi.org/10.1039/b607016g
11.
11.H. Do, M. Reinhard, H. Vogeler, A. Puetz, M. F. Klein, W. Schabel, A. Colsmann, and U. Lemmer, “Polymeric anodes from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for 3.5% efficient organic solar cells,” Thin Solid Films 517, 59005902 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.212
12.
12.Y. Zhou, F. Zhang, K. Tvingstedt, S. Barrau, F. Li, W. Tian, and O. Inganas, “Investigation on polymer anode design for flexible polymer solar cells,” Applied Physics Letters 92, 233308 (2008).
http://dx.doi.org/10.1063/1.2945796
13.
13.Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive pedot:pss electrode with optimized solvent and thermal post-treatment for ito-free organic solar cells,” Advanced Functional Materials 21, 10761081 (2011).
http://dx.doi.org/10.1002/adfm.201002290
14.
14.S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and flexible ito-free organic solar cells using highly conductive polymer anodes,” Advanced Materials 20, 40614067 (2008).
http://dx.doi.org/10.1002/adma.200800338
15.
15.Y.-S. Hsiao, W.-T. Whang, C.-P. Chen, and Y.-C. Chen, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film for use in ito-free polymer solar cells,” J. Mater. Chem. 18, 59485955 (2008).
http://dx.doi.org/10.1039/b813079e
16.
16.A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of p3ht/pcbm organic photoactive layers: Material composition and device characteristics,” Adv. Funct. Mater. 22, 40784086 (2012).
http://dx.doi.org/10.1002/adfm.201200548
17.
17.S.-I. Na, B.-K. Yu, S.-S. Kim, D. Vak, T.-S. Kim, J.-S. Yeo, and D.-Y. Kim, “Fully spray-coated ito-free organic solar cells for low-cost power generation,” Solar Energy Materials and Solar Cells 94, 13331337 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.01.003
18.
18.D. Baierl, B. Fabel, P. Gabos, L. Pancheri, P. Lugli, and G. Scarpa, “Solution-processable inverted organic photodetectors using oxygen plasma treatment,” Organic Electronics 11, 11991206 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.023
19.
19.D. Baierl, B. Fabel, P. Lugli, and G. Scarpa, “Efficient indium-tin-oxide (ito) free top-absorbing organic photodetector with highly transparent polymer top electrode,” Organic Electronics 12, 16691673 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.021
20.
20.D. Baierl, L. Pancheri, M. Schmidt, D. Stoppa, G.-F. Dalla Betta, G. Scarpa, and P. Lugli, “A hybrid cmos-imager with a solution-processable polymer as photoactive layer,” Nature Communications 3, 1175 (2012).
http://dx.doi.org/10.1038/ncomms2180
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4899044 for details on thickness measurements of the active layers and sheet resistance of PEDOT:PSS layers.[Supplementary Material]
22.
22.R. Po, C. Carbonera, A. Bernardi, and N. Camaioni, “The role of buffer layers in polymer solar cells,” Energy Environ. Sci. 4, 285310 (2011).
http://dx.doi.org/10.1039/c0ee00273a
23.
23.H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Advanced Functional Materials 20, 13711388 (2010).
http://dx.doi.org/10.1002/adfm.200902236
24.
24.C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Reports on Progress in Physics 73, 096401 (2010).
http://dx.doi.org/10.1088/0034-4885/73/9/096401
25.
25.A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, and K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, 2010), p. 147.
26.
26.B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, “Effects of layer thickness and annealing of pedot:pss layers in organic photodetectors,” Macromolecules 42, 67416747 (2009).
http://dx.doi.org/10.1021/ma901182u
27.
27.G. Pace, A. Grimoldi, D. Natali, M. Sampietro, J. E. Coughlin, G. C. Bazan, and M. Caironi, “All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules,” Advanced Materials (2014).
http://dx.doi.org/10.1002/adma.201402918
28.
28.G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Advanced Materials 25, 68296833 (2013).
http://dx.doi.org/10.1002/adma.201303473
29.
29.A. Falco, L. Cinà, G. Scarpa, P. Lugli, and A. Abdellah, “Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes,” ACS Applied Materials & Interfaces 6, 1059310601 (2014).
http://dx.doi.org/10.1021/am5022123
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4899044
Loading
/content/aip/journal/adva/4/10/10.1063/1.4899044
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4899044
2014-10-17
2016-09-30

Abstract

In this paper we report on Indium Tin Oxide (ITO)-free spray coated organic photodiodes with an active layer consisting of a poly(3-hexylthiophen) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend and patterned poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes. External quantum efficiency and current voltage characteristics under illuminated and dark conditions as well as cut-off frequencies for devices with varying active and hole conducting layer thicknesses were measured in order to characterize the fabricated devices. 60% quantum efficiency as well as nearly four orders of magnitude on-off ratios have been achieved. Those values are comparable with standard ITO devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4899044.html;jsessionid=NjCEICGUjLbLj4DoyzGn63Js.x-aip-live-06?itemId=/content/aip/journal/adva/4/10/10.1063/1.4899044&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4899044&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4899044'
Right1,Right2,Right3,