Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. J. Donahue and D. G. Porter, OOMMF user’s guide, version 1.0. interagency report NISTIR 6376, national institute of standards and technology, gaithersburg, MD, 1999.
2.A. Drews, G. Selke, C. Abert, T. Gerhardt, J. M. Meyer, C. Darsow-Fromm, M. Menzel, B. Krüger, and D. P. F. Möller, Micromagnum (2011).
3.L. Lopez-Diaz, D. Aurelio, L. Torres, E. Martinez, M. A. Hernandez-Lopez, J. Gomez, O. Alejos, M. Carpentieri, G. Finocchio, and G. Consolo, “Micromagnetic simulations using graphics processing units,” Journal of Physics D: Applied Physics 45(32), 323001 (2012).
4.A. Vansteenkiste and B. Van de Wiele, “Mumax: A new high-performance micromagnetic simulation tool,” Journal of Magnetism and Magnetic Materials 323(21), 25852591 (2011).
5.A. Vansteenkiste, B. Van de Wiele, M. Dvornik, R. Lassalle-Balier, and G. Rowlands, mumax2, 2012.
6.The Go Programming Language, 2009.
7.NVIDIA CUDA C programming guide, 2014.
8.T. Fischbacher, M. Franchin, G. Bordignon, and H. Fangohr, “A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag,” IEEE Transactions On Magnetics 43(6), 28962898 (2007).
9.A. Kakay, E. Westphal, and R. Hertel, “Speedup of FEM micromagnetic simulations with graphical processing units,” IEEE Transactions On Magnetics 46(6), 23032306 (2010).
10.W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. Tsiantos, “Scalable parallel micromagnetic solvers for magnetic nanostructures,” Comput. Mater. Sci. 28, 366383 (2003).
11.R. Chang, S. Li, M. V. Lubarda, B. Livshitz, and V. Lomakin, “Fastmag: Fast micromagnetic simulator for complex magnetic structures,” Journal of Applied Physics 109(7), 07D358 (2011).
12.muMAG Micromagnetic Modeling Activity Group
15.Graham Rowlands. Muview2.
16.L. D. Landau and E. M. Lifshitz, “Theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Phys. Z. Sowietunion 8, 153169 (1935).
17.T. L. Gilbert, “Lagrangian formulation of the gyromagnetic equation of the magnetization field,” Phys. Rev. 100, 12431243 (1955).
18.R. D. McMichael, M. J. Donahue, D. G. Porter, and Jason Eicke, “Comparison of magnetostatic field calculation methods on two-dimensional square grids as applied to a micromagnetic standard problem,” Journal of Applied Physics 85(8), 58165818 (1999).
19.M. J. Donahue, D. G. Porter, R. D. McMichael, and J. Eicke, “Behavior of mu mag standard problem no. 2 in the small particle limit,” Journal of Applied Physics 87(9), 55205522 (2000).
20.K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic boundary conditions for demagnetization interactions in micromagnetic simulations,” Journal of Physics D-applied Physics 41(17), (2008).
21.Hans Fangohr, Giuliano Bordignon, Matteo Franchin, Andreas Knittel, Peter A. J. de Groot, and Thomas Fischbacher, “A new approach to (quasi) periodic boundary conditions in micromagnetics: The macrogeometry,” Journal of Applied Physics 105(7 ) : Phys Conf Inc; IEEE, Magnet Soc, April 2009.
22.W. F. Brown, Jr., Micromagnetics (Interscience Publishers, New York, NY, 1963).
23.M. J. Donahue, “A variational approach to exchange energy calculations in micromagnetics,” Journal of Applied Physics 83(11), 64916493 (1998).
24.M. J. Donahue and D. G. Porter, “Exchange energy formulations for 3d micromagnetics,” Physica B-condensed Matter 343(1-4), 177183 (2004).
25.A. N. Bogdanov and U. K. Rößler, “Chiral symmetry breaking in magnetic thin films and multilayers,” Phys. Rev. Lett. 87, 037203 (2001).
26.S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction,” Phys. Rev. B 88, 184422 (2013).
27.Andre Thiaville, Stanislas Rohart, Emilie Jue, Vincent Cros, and Albert Fert, “Dynamics of dzyaloshinskii domain walls in ultrathin magnetic films,” Epl 100(5), 57002 (2012).
28.William Fuller Brown, “Thermal fluctuations of a single-domain particle,” Journal of Applied Physics 34(4), 13191320 (1963).
29.L. Breth, D. Suess, C. Vogler, B. Bergmair, M. Fuger, R. Heer, and H. Brueckl, “Thermal switching field distribution of a single domain particle for field-dependent attempt frequency,” Journal of Applied Physics 112(2), (2012).
30.S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets,” Physical Review Letters 93(12), 127204 (2004).
31.J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of Magnetism and Magnetic Materials 159(1-2), L1L7 (1996).
32.J. Xiao, A. Zangwill, and M. D. Stiles, “Boltzmann test of slonczewski’s theory of spin-transfer torque,” Physical Review B 70(17), 172405 (2004).
33.M. Najafi, B. Kruger, S. Bohlens, M. Franchin, H. Fangohr, A. Vanhaverbeke, R. Allenspach, M. Bolte, U. Merkt, D. Pfannkuche, D. P. F. Moller, and G. Meier, “Proposal for a standard problem for micromagnetic simulations including spin-transfer torque,” Journal of Applied Physics 105(11), 113914 (2009).
34.B. Streibl, T. Schrefl, and J. Fidler, “Dynamic fe simulation of μmag standard problem no. 2,” Journal of Applied Physics 85(8), 58195821 (1999).
35.L. Lopez-Diaz, O. Alejos, L. Torres, and J. I. Iniguez, “Solutions to micromagnetic standard problem no. 2 using square grids,” Journal of Applied Physics 85(8), 58135815 (1999).
36.R. D. McMichael, M. J. Donahue, D. G. Porter, and J. Eicke, “Comparison of magnetostatic field calculation methods on two-dimensional square grids as applied to a micromagnetic standard problem,” Journal of Applied Physics 85(8), 58165818 (1999).
37.W. Rave, K. Fabian, and A. Hubert, “Magnetic states of small cubic particles with uniaxial anisotropy,” Journal of Magnetism and Magnetic Materials 190(3), 332348 (1998).
38.J. Leliaert, B. Van de Wiele, A. Vansteenkiste, L. Laurson, G. Durin, L. Dupré, and B. Van Waeyenberge, “Current-driven domain wall mobility in polycrystalline permalloy nanowires: A numerical study,” Journal of Applied Physics 115(23), (2014).
39.J. W. Lau, R. D. McMichael, and M. J. Donahue, “Implementation of Two-Dimensional Polycrystalline Grains in Object Oriented Micromagnetic Framework,” Journal of Research of NIST 114(1), 5767 (2009).

Data & Media loading...


Article metrics loading...



We report on the design, verification and performance of , an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on inexpensive hardware. We verified each part of the software by comparing results to analytical values where available and to micromagnetic standard problems. also offers specific extensions like MFM image generation, moving simulation window, edge charge removal and material grains.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd