Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
2.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
3.D. B. Strukov and H. Kohlstedt, MRS Bulletin 37, 108 (2012).
4.J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, Adv. Mat. 23, 5377 (2011).
5.E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Y. Shur, Phys. Rev. B 83, 235313 (2011).
6.A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys. 97, 093903 (2005).
7.J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V. D. Travkin, A. A. Mukhin, and A. Loidl, Eur. Phys. J. B 75, 451 (2010).
8.Y. Shuai, S. Zhou, D. Bürger, M. Helm, and H. Schmidt, J. Appl. Phys. 109, 124117 (2011).
9.K. Yin, M. Li, Y. Liu, C. He, F. Zhuge, B. Chen, W. Lu, X. Pan, and R. W. Li, Appl. Phys. Lett. 97, 042101 (2010).
10.J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Nature Materials 8, 229 (2009).
11.S. Farokhipoor and B. Noheda, Phys. Rev. Lett. 107, 127601 (2011).
12.B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nature Mater. 3, 164 (2004).
13.T. Choi, Y. Horibe, H. T. Yi, Y. J. Choi, W. Wu, and S.-W. Cheong, Nature Materials 9, 253 (2010).
14.D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, Nature Materials 11, 284 (2012).
15.Y. Du, X. L. Wang, D. P. Chen, S. X. Dou, Z. X. Cheng, M. Higgins, G. Wallace, and J. Y. Wang, Appl. Phys. Lett. 99, 252107 (2011).
16.T. Matsumoto, R. Ishikawa, T. Tohei, H. Kimura, Q. Yao, H. Zhao, X. Wang, D. Chen, Z. Cheng, N. Shibata, and Y. Ikuhara, Nano Lett. 13, 4594 (2013).
17.T. Jungk, Á. Hoffmann, M. Fiebig, and E. Soergel, Appl. Phys. Lett. 97, 012904 (2010).
18.S. M. Griffin, M. Lilienblum, K. T. Delaney, Y. Kumagai, M. Fiebig, and N. A. Spaldin, Phys. Rev. X 2, 041022 (2012).
19.S. Parashar, A. R. Raju, C. N. R. Rao, P. Victor, and S. B. Krupanidhi, J. Phys. D: Appl. Phys. 36, 2134 (2003).
20.D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, J. Appl. Phys. 93, 5563 (2003).
21.K. Haratake, N. Shigemitsu, M. Nishijima, T. Yoshimura, and N. Fujimura, Jap. J. App. Phys. 44, 6977 (2005).
22.Z. B. Yan, S. Z. Li, K. F. Wang, and J. M. Liu, Appl. Phys. Lett. 96, 012103 (2010).
23.Z. Chen, C. L. Ma, F. X. Wu, Y. B. Chen, J. Zhou, G. L. Yuan, Z. B. Gu, S. T. Zhang, and Y. F. Chen, Appl. Surf. Sci. 257, 8033 (2011).
24.W. Wu, Y. Horibe, N. Lee, S.-W. Cheong, and J. R. Guest, Phys. Rev. Lett. 108, 077203 (2012).
25.B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
26.K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).
27.U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, IEEE Trans. Electron Devices 56, 193 (2009).
28.A. Sawa, Mater. Today 11, 2836 (2008).
29.D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).
30.F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, K. Kobayashi, J. Verbeeck, G. Panaccione, and R. Dittmann, Nanoscale 5, 39543960 (2013).
31.C. N. R. Rao, G. V. S. Rao, and B. M. Wanklyn, J. Phys. Chem. Solids 32, 345 (1971).
32.C. Moure, J. F. Fernandez, M. Villegas, and P. Duran, J. Eur. Ceram. Soc. 19, 131 (1999).
33.M. Tomczyk, P. M. Vilarinho, A. Moreira, and B. Almeida, J. Appl. Phys. 110, 064116 (2011).
34.P. Ren, H. Fan, and X. Wang, App. Phys. Lett. 103, 152905 (2013).
35.R. F. Klie and N. D. Browning, Appl. Phys. Lett. 77, 3737 (2000).
36.K. Watanabe, I. Sakaguchi, S. Hishita, N. Ohashi, and H. Haneda, App. Phys. Expr. 4, 055801 (2011).
37.M. Lanza, K. Zhang, M. Porti, M. Nafría, Z. Y. Shen, L. F. Liu, J. F. Kang, D. Gilmer, and G. Bersuker, App. Phys. Lett. 100, 123508 (2012).
38.D.-S. Shang, L. Shi, J.-R. Sun, and B.-G. Shen, Nanotechnology 22, 254008 (2011).
39.T. Sluka, A. K. Taganstev, P. Bednyakov, and N. Setter, Nat. Commun. 4, 1808 (2013).

Data & Media loading...


Article metrics loading...



We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd