Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4900487
1.
1.M. Tonouchi, Nature Photonics 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
2.
2.R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
http://dx.doi.org/10.1038/417156a
3.
3.C. Sirtori, S. Barbieri, and R. Colombelli, Nature Photonics 7, 691 (2013).
http://dx.doi.org/10.1038/nphoton.2013.208
4.
4.B. S. Williams, Nature Photonics 1, 517 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
5.
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
6.
6.F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, Nature Nanotechnology 4, 839 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
7.
7.T. Mueller, F. N. Xia, and P. Avouris, Nature Photonics 4, 297 (2010).
http://dx.doi.org/10.1038/nphoton.2010.40
8.
8.T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, Nature Communications 2, 1 (2011).
http://dx.doi.org/10.1038/ncomms1464
9.
9.X. C. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Letters 12, 2745 (2012).
http://dx.doi.org/10.1021/nl204414u
10.
10.G. F. Fan, H. W. Zhu, K. L. Wang, J. Q. Wei, X. M. Li, Q. K. Shu, N. Guo, and D. H. Wu, Acs Applied Materials & Interfaces 3, 721 (2011).
http://dx.doi.org/10.1021/am1010354
11.
11.M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).
http://dx.doi.org/10.1038/nature10067
12.
12.H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, Applied Physics Letters 95, 141103 (2009).
http://dx.doi.org/10.1063/1.3244206
13.
13.H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, Applied Physics Letters 96, 111112 (2010).
http://dx.doi.org/10.1063/1.3367743
14.
14.P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Nano Letters 8, 4248 (2008).
http://dx.doi.org/10.1021/nl8019399
15.
15.R. Kim, V. Perebeinos, and P. Avouris, Physical Review B 84, 075449 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075449
16.
16.D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. D. Xu, Nature Nanotechnology 7, 114 (2012).
http://dx.doi.org/10.1038/nnano.2011.243
17.
17.T. Winzer, A. Knorr, and E. Malic, Nano Letters 10, 4839 (2010).
http://dx.doi.org/10.1021/nl1024485
18.
18.T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, Physical Review Letters 108, 167401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.167401
19.
19.V. Ryzhii, M. Ryzhii, and T. Otsuji, Journal of Applied Physics 101, 083114 (2007).
http://dx.doi.org/10.1063/1.2717566
20.
20.T. Winzer, E. Malić, and A. Knorr, Phys. Rev. B 87, 165413 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165413
21.
21.J. Zhang, T. Li, J. Wang, and J. Schmalian, The European Physical Journal Special Topics 222, 1263 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01920-2
22.
22.T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, IEEE Journal of Selected Topics in Quantum Electronics 19, 8400209 (2013).
http://dx.doi.org/10.1109/JSTQE.2012.2208734
23.
23.F. Rana, IEEE Transactions on Nanotechnology 7, 91 (2008).
http://dx.doi.org/10.1109/TNANO.2007.910334
24.
24.V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, Journal of Applied Physics 106, 084507 (2009).
http://dx.doi.org/10.1063/1.3247541
25.
25.V. Ryzhii, A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, and T. Otsuji, Applied Physics Letters 103, 163507 (2013).
http://dx.doi.org/10.1063/1.4826113
26.
26.I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stoehr, A. Koehler, U. Starke, and A. Cavalleri, Nature Materials 12, 1119 (2013).
http://dx.doi.org/10.1038/nmat3757
27.
27.K. Raseong, V. Perebeinos, and P. Avouris, Physical Review B 84, 075449 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075449
28.
28.L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
29.
29.R. M. Feenstra, D. Jena, and G. Gu, Journal of Applied Physics 111, 043711 (2012).
http://dx.doi.org/10.1063/1.3686639
30.
30.L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nature Communications 4, 1 (2013).
http://dx.doi.org/10.1038/ncomms2817
31.
31.L. A. Ponomarenko, B. D. Belle, R. Jalil, L. Britnell, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, A. H. C. Neto, L. Eaves, and M. I. Katsnelson, Journal of Applied Physics 113, 136502 (2013).
http://dx.doi.org/10.1063/1.4795542
32.
32.C. Hamaguchi, Basic semiconductor physics, 2nd ed. (Springer, Heidelberg, 2010), p. 104.
33.
33.R. R. Hartmann and M. E. Portnoi, Optoelectronic Properties of Carbon-based Nanostructures: Steering electrons in graphene by electromagnetic fields (LAP Lambert, Saarbrücken, 2011).
34.
34.Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, and B. B. Huang, Nanoscale 3, 3883 (2011).
http://dx.doi.org/10.1039/c1nr10577a
35.
35.M. Jablan, H. Buljan, and M. Soljacic, Physical Review B 80, 245435 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245435
36.
36.J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Nature 506, 349 (2014).
http://dx.doi.org/10.1038/nature12952
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4900487
Loading
/content/aip/journal/adva/4/10/10.1063/1.4900487
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4900487
2014-10-22
2016-12-10

Abstract

We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4900487.html;jsessionid=dAa2Lzvv2Uf2YrBC3r3wSbdy.x-aip-live-03?itemId=/content/aip/journal/adva/4/10/10.1063/1.4900487&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4900487&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4900487'
Right1,Right2,Right3,