Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Tonouchi, Nature Photonics 1, 97 (2007).
2.R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
3.C. Sirtori, S. Barbieri, and R. Colombelli, Nature Photonics 7, 691 (2013).
4.B. S. Williams, Nature Photonics 1, 517 (2007).
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
6.F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, Nature Nanotechnology 4, 839 (2009).
7.T. Mueller, F. N. Xia, and P. Avouris, Nature Photonics 4, 297 (2010).
8.T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, Nature Communications 2, 1 (2011).
9.X. C. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Letters 12, 2745 (2012).
10.G. F. Fan, H. W. Zhu, K. L. Wang, J. Q. Wei, X. M. Li, Q. K. Shu, N. Guo, and D. H. Wu, Acs Applied Materials & Interfaces 3, 721 (2011).
11.M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).
12.H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, Applied Physics Letters 95, 141103 (2009).
13.H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, Applied Physics Letters 96, 111112 (2010).
14.P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Nano Letters 8, 4248 (2008).
15.R. Kim, V. Perebeinos, and P. Avouris, Physical Review B 84, 075449 (2011).
16.D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. D. Xu, Nature Nanotechnology 7, 114 (2012).
17.T. Winzer, A. Knorr, and E. Malic, Nano Letters 10, 4839 (2010).
18.T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, Physical Review Letters 108, 167401 (2012).
19.V. Ryzhii, M. Ryzhii, and T. Otsuji, Journal of Applied Physics 101, 083114 (2007).
20.T. Winzer, E. Malić, and A. Knorr, Phys. Rev. B 87, 165413 (2013).
21.J. Zhang, T. Li, J. Wang, and J. Schmalian, The European Physical Journal Special Topics 222, 1263 (2013).
22.T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, IEEE Journal of Selected Topics in Quantum Electronics 19, 8400209 (2013).
23.F. Rana, IEEE Transactions on Nanotechnology 7, 91 (2008).
24.V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, Journal of Applied Physics 106, 084507 (2009).
25.V. Ryzhii, A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, and T. Otsuji, Applied Physics Letters 103, 163507 (2013).
26.I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stoehr, A. Koehler, U. Starke, and A. Cavalleri, Nature Materials 12, 1119 (2013).
27.K. Raseong, V. Perebeinos, and P. Avouris, Physical Review B 84, 075449 (2011).
28.L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
29.R. M. Feenstra, D. Jena, and G. Gu, Journal of Applied Physics 111, 043711 (2012).
30.L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nature Communications 4, 1 (2013).
31.L. A. Ponomarenko, B. D. Belle, R. Jalil, L. Britnell, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, A. H. C. Neto, L. Eaves, and M. I. Katsnelson, Journal of Applied Physics 113, 136502 (2013).
32.C. Hamaguchi, Basic semiconductor physics, 2nd ed. (Springer, Heidelberg, 2010), p. 104.
33.R. R. Hartmann and M. E. Portnoi, Optoelectronic Properties of Carbon-based Nanostructures: Steering electrons in graphene by electromagnetic fields (LAP Lambert, Saarbrücken, 2011).
34.Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, and B. B. Huang, Nanoscale 3, 3883 (2011).
35.M. Jablan, H. Buljan, and M. Soljacic, Physical Review B 80, 245435 (2009).
36.J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Nature 506, 349 (2014).

Data & Media loading...


Article metrics loading...



We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd