Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/10/10.1063/1.4900606
1.
1.M. E. Lines and A. M. Glass, Principles Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
2.
2.S. Kim, V. Gopalan, and A. Gruverman, Appl. Phys. Lett. 80, 2740 (2002).
http://dx.doi.org/10.1063/1.1470247
3.
3.A. K. Bandyopadhyay and P. C. Ray, J. Appl. Phys. 95, 226 (2004).
http://dx.doi.org/10.1063/1.1630698
4.
4.K. Takeda, T. Hoshina, H. Takeda, and T. Tsurumi, J. Appl. Phys. 112, 124105 (2012).
http://dx.doi.org/10.1063/1.4769306
5.
5.S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E. B. Kley, A. Tunnermann, and T. Pertsch, Appl. Phys. Lett. 103, 051117 (2013).
http://dx.doi.org/10.1063/1.4817507
6.
6.M. Esseling, A. Zaltron, C. Sada, and C. Denz, Appl. Phys. Lett. 103, 061115 (2013).
http://dx.doi.org/10.1063/1.4818143
7.
7.A. Kuslyva and V. Storozhev, POMA 19, 030067 (2013).
http://dx.doi.org/10.1121/1.4799924
8.
8.R. Roy, P. Giri, B. Das, K. Choudhary, A. Ghosal, and A. K. Bandyopadhyay, AIP Advances 4, 087101 (2014).
http://dx.doi.org/10.1063/1.4891466
9.
9.Ed. L. Wooten et al., IEEE Journal of selected Topics in Quantum Electronics 6, 1077 (2000).
http://dx.doi.org/10.1109/2944.826874
10.
10.S. Mitatha, PIER 99, 383 (2009).
http://dx.doi.org/10.2528/PIER09083006
11.
11.S. K. Garai and S. Mukhopadhyay, Optik 121, 715 (2010).
http://dx.doi.org/10.1016/j.ijleo.2008.10.011
12.
12.A. K. Bandyopadhyay, P. C. Ray, L. Vu-Quoc, and A. R. McGurn, Phys. Rev. B 81, 064104 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.064104
13.
13.V. Srinivas and L. Vu-Quoc, Ferroelectrics 163, 29 (1995).
http://dx.doi.org/10.1080/00150199508208263
14.
14.A. K. Bandyopadhyay, P. C. Ray, and V. Gopalan, J. Phys.: Condens Matter 18, 4093 (2006).
http://dx.doi.org/10.1088/0953-8984/18/16/016
15.
15.A. K. Bandyopadhyay, P. C. Ray, and V. Gopalan, Euro. Phys. J. B 65, 525 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00356-9
16.
16.D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, Phys. Rev. B 71, 184110 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184110
17.
17.P. Giri, K. Choudhary, S. Gupta, A. K. Bandyopadhyay, and A. R. McGurn, Phys. Rev. B 84, 155429 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155429
18.
18.V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 64, 1627 (1973).
19.
19.F. Kagawa, S. Horiuchi, H. Matsui, R. Kumai, Y. Onose, T. Hasegawa, and Y. Tokura, Phys. Rev. Lett 104, 227602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.227602
20.
20.P. Giri, K. Choudhary, A. Day, A. Biswas, A. Ghosal, and A. K. Bandyopadhyay, Phys. Rev. B 86, 184101 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.184101
21.
21.K. Hizanidis and D. J. Frantzeskakis, IEEE Journal of Quantum electronics 29, 00189197 (1993).
http://dx.doi.org/10.1109/3.199270
22.
22.Y. Ohmachi, K. Sawamoto, and H. Toyoda, Jpn. J. Appl. Phys. 6 (1967).
http://dx.doi.org/10.1143/JJAP.6.1467
23.
23.R. T Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971).
http://dx.doi.org/10.1063/1.1660528
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/10/10.1063/1.4900606
Loading
/content/aip/journal/adva/4/10/10.1063/1.4900606
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/10/10.1063/1.4900606
2014-10-23
2016-12-03

Abstract

A model of one dimensional array of the slab domain of a ferroelectric crystal and its polarization with time and space is explained by nonlinear Klein Gorden (KG) equation. The present article has been shown the slower moving dark soliton and faster moving bright soliton both move in nonlinear system with dispersive frequency that has significant as characterized frequency of ferroelectric medium. It is also shown that the dark soliton has an important role to control the magnitude of dielectric constant of the medium. The frequency dependent dielectric constant is evaluated from the nonlinear Klein Gorden (NLKG) equation using characterized frequency and it matches with the experimental results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/10/1.4900606.html;jsessionid=fYDIYt0cJcW-Nk3SobSx0sSr.x-aip-live-02?itemId=/content/aip/journal/adva/4/10/10.1063/1.4900606&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/10/10.1063/1.4900606&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4900606'
Right1,Right2,Right3,